贵州省贵阳市南明区小碧中学2023-2024学年七年级下学期6月月考数学试题
展开(时间:120分钟 满分:150分)
一、选择题(以下每小题均有A,B,C,D四个选项,其中只有一个选项正确,每小题3分,共36分)
1.以下列各组线段为边,能组成三角形的是( )
A.2 cm,2 cm,5 cmB.3 cm,4 cm,7 cm
C.4 cm,6 cm,8 cmD.5 cm,6 cm,12 cm
2.现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是( )
3.古语有云:“水滴石穿”,若水珠不断滴在一块石头上,经过40年,石头上会形成一个深为0.000 004 8 cm的小洞.数0.000 004 8用科学记数法表示为( )
A.4.8×10-5B.4.8×10-6C.4.8×10-7D.48×10-7
4.下列能用平方差公式计算的是( )
A.(-x+y)(x-y) B.(x-1)(-1-x)C.(2x+y)(2y-x) D.(x-2)(x-1)
5.下列计算正确的是( )
A.3mn-2mn=1 B.(m2n3)2=m4n6C.(-m)3·m=m4 D.(m+n)2=m2+n2
6.下列说法中正确的是( )
A.同位角相等
B.如果一个等腰三角形的两边长分别为3和6,那么该三角形的周长为12或15
C.直线外一点与直线上各点连接的所有线段中,垂线段最短
D.事件“打开电视机,正好播放足球比赛”是必然事件
7.如图所示,不能推出a∥b的条件是( )
第7题图
A.∠1=∠3 B.∠2=∠4C.∠2=∠3 D.∠2+∠3=180°
8.把一个长为8,宽为3的长方形的宽增加x(0≤x<5),长不变,所得长方形的面积y关于x的函数关系式为( )
A.y=24-xB.y=8x-24C.y=8xD.y=8x+24
9.如图所示,直线AB∥CD,∠ABE=45°,∠D=20°,则∠E的度数为( )
第9题图
A.20°B.25°C.30°D.35°
10.如图所示,已知AE=AC,∠C=∠E,下列条件中,无法判定△ABC≌△ADE的是( )
第10题图
A.∠B=∠DB.BC=DEC.∠1=∠2D.AB=AD
11.如图所示,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则△ABP的面积S随着时间t变化的函数图象大致是( )
12.七巧板是一种古老的汉族传统益智游戏,由七块板组成,可拼成许多图形(1 600种以上).如图所示,现在用边长为4的正方形制作的七巧板拼成一幅土家摆手舞图案,其中舞者头部正方形的面积是( )
第12题图
A.1B.2C.4D.6
二、填空题(每小题4分,共16分)
13.若m+n=10,mn=5,则m2+n2的值为 .
14.在“抛掷正六面体”的试验中,正六面体的六个面分别标有数字“1”“2”“3”“4”“5”“6”,当试验次数很大时,数字“6”朝上的频率的变化趋势接近的值是 .
15.小星在学习“设计自己的运算程序”综合与实践课后,设计了如图所示的运算程序.若开始输入的x值为-4,则最后输出的结果y是 .
第15题图
16.一艘轮船和一艘快艇沿相同路线从甲港出发到乙港,在它们行使的过程中,路程随时间变化的图象如图所示,则下列说法正确的是 (填序号).
第16题图
①轮船的平均速度为20 km/h;②轮船比快艇先出发2 h;③快艇的平均速度为803 km/h;④快艇比轮船早到2 h.
三、解答题(本大题9小题,共98分.解答应写出必要的文字说明、证明过程或演算步骤)
17.(本题满分12分)计算:(1)-12 022+|-3|+(π-2 022)0-(-12)-3;
(2)[(2x2)3-6x3(x3-2x2)]÷2x4.
18.(本题满分10分)先化简,再求值:[(x+2y)(x-2y)-(x-3y)2]÷(-2y),其中(x+1)2+|y-2|=0.
19.(本题满分10分)如图所示,在△ABC中,点D在边AC上,且AD=AB.
(1)请用无刻度的直尺和圆规作出∠A的平分线(保留作图痕迹,不写作法);
(2)若(1)中所作的角平分线与边BC交于点E,连接DE.求证:DE=BE.
20.(本题满分10分)如图所示,在△BCD中,BC=4,BD=5.
(1)求CD的取值范围;
(2)若AE∥BD,∠A=55°,∠BDE=130°,求∠C的度数.
21.(本题满分10分)某次大型活动,组委会启用无人机航拍,已知无人机在上升和下降过程中速度相同,设无人机的飞行高度h(m)与操控无人机的时间t(min)之间的关系如图中的实线所示,根据图象回答下列问题:
(1)图中的自变量是 ,因变量是 .
(2)求无人机在75 m高的上空停留的时间.
(3)在上升或下降过程中,求无人机的速度.
(4)求图中a,b表示的数.
(5)图中点A表示的是什么?
22.(本题满分10分)对某篮球运动员进行3分球投篮测试结果如表所示:
(1)计算表中投篮50次、100次、150次、200次相应的命中率.
(2)这个运动员3分球投篮命中的概率约是多少?
(3)估计这个运动员3分球投篮15次能得多少分.
23.(本题满分12分)如图所示,E,F分别是等边三角形ABC的边AB,AC上的点,且BE=AF,CE,BF交于点P.
(1)试说明:BF=CE;
(2)求∠BPC的度数.
24.(本题满分12分)如图所示,在△ABC中,AC=AB,AD⊥BC,过点C作CE∥AB,∠BCE=50°,连接ED并延长ED交AB于点F.
(1)求∠CAD的度数;
(2)试说明:△CDE≌△BDF;
(3)AC,AF,CE的数量关系.
25.(本题满分12分)已知点A,B在直线l两侧,点C,D在直线l上,点P为l上一动点,连接AP,BP,且CP=DB.
(1)[问题解决]如图(1)所示,当点Р在线段CD上时,若∠ACP=∠BDP=90°,∠PAC=∠BPD,则PA PB(选填“>”“<”或“=”);
(2)[问题探究]如图(2)所示,当点P在DC延长线上时,若∠ACP=∠BDP=90°,∠PAC=∠BPD,探究线段CD,AC,DB之间的数量关系,并说明理由;
(3)[拓展延伸]如图(3)所示,当点P在线段CD上时,若∠ACP=∠BDP≠90°,将△PBD沿直线l对折得到△PB′D,此时∠ACP=∠APB′,探究线段CD,
AC,DB′之间的数量关系,并说明理由.
投篮次数n
10
50
100
150
200
命中次数m
4
25
65
90
120
命中率
0.4
2024年贵州省贵阳市南明区小碧中学中考数学二模试卷(含答案): 这是一份2024年贵州省贵阳市南明区小碧中学中考数学二模试卷(含答案),共14页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年贵州省贵阳市南明区小碧中学中考数学二模试卷: 这是一份2024年贵州省贵阳市南明区小碧中学中考数学二模试卷,共29页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年贵州省贵阳市南明区小碧中学中考二模数学试题: 这是一份2024年贵州省贵阳市南明区小碧中学中考二模数学试题,文件包含2024年贵州省贵阳市南明区小碧中学中考二模数学试题pdf、答案pdf等2份试卷配套教学资源,其中试卷共10页, 欢迎下载使用。