所属成套资源:2024年上海市各区高三二模分类汇编
- 专题05 向量(三大题型,16区二模新题速递)(学生卷)-2024年高考数学二模试题分类汇编(上海专用) 试卷 0 次下载
- 专题05 向量(三大题型,16区二模新题速递)(解析卷)-2024年高考数学二模试题分类汇编(上海专用) 试卷 0 次下载
- 专题06 数列(三大题型,16区二模新题速递)(解析卷)-2024年高考数学二模试题分类汇编(上海专用) 试卷 0 次下载
- 专题07 解析几何(七大题型,16区二模新题速递)(学生卷)-2024年高考数学二模试题分类汇编(上海专用) 试卷 0 次下载
- 专题07 解析几何(七大题型,16区二模新题速递)(解析卷)-2024年高考数学二模试题分类汇编(上海专用) 试卷 0 次下载
专题06 数列(三大题型,16区二模新题速递)(学生卷)-2024年高考数学二模试题分类汇编(上海专用)
展开这是一份专题06 数列(三大题型,16区二模新题速递)(学生卷)-2024年高考数学二模试题分类汇编(上海专用),共5页。试卷主要包含了题型一,题型二,题型三等内容,欢迎下载使用。
选 题 列 表
2024·上海杨浦·二模 2024·上海奉贤·二模
2024·上海浦东·二模 2024·上海青浦·二模
2024·上海黄浦·二模 2024·上海闵行·二模
2024·上海普陀·二模 2024·上海金山·二模
2024·上海徐汇·二模 2024·上海静安·二模
2024·上海松江·二模 2024·上海长宁·二模
2024·上海嘉定·二模 2024·上海崇明·二模
2024·上海虹口·二模 2024·上海宝山·二模
汇 编 目 录
TOC \ "1-3" \h \u \l "_Tc31775" 题型一:等差数列及其求和 PAGEREF _Tc31775 \h 1
\l "_Tc4553" 题型二:等比数列及其求和 PAGEREF _Tc4553 \h 2
\l "_Tc4997" 题型三:数列极限及新定义问题 PAGEREF _Tc4997 \h 4
一、题型一:等差数列及其求和
1.(23-24高三下·上海浦东新·期中)设,记,令有穷数列为零点的个数,则有以下两个结论:①存在,使得为常数列;②存在,使得为公差不为零的等差数列.那么( )
A.①正确,②错误B.①错误,②正确
C.①②都正确D.①②都错误
2.(2024·上海松江·二模)已知等差数列的公差为2,前项和为,若,则使得成立的的最大值为 .
3.(2024·上海杨浦·二模)已知实数满足:①;②存在实数,使得,,是等差数列,,,也是等差数列.则实数的取值范围是 .
4.(2024·上海杨浦·二模)某钢材公司积压了部分圆钢,经清理知共有2024根,每根圆钢的直径为10厘米.现将它们堆放在一起.若堆成纵断面为等腰梯形(如图每一层的根数比上一层根数多1根),且为考虑安全隐患,堆放高度不得高于米,若堆放占用场地面积最小,则最下层圆钢根数为 .
5.(2024·上海黄浦·二模)已知数列是给定的等差数列,其前项和为,若,且当与时,取得最大值,则的值为 .
6.(23-24高三下·上海浦东新·期中)已知等差数列满足,,则 .
7.(2024·上海崇明·二模)若等差数列的首项,前5项和,则 .
8.(2024·上海虹口·二模)已知等差数列满足,.
(1)求的通项公式;
(2)设数列前项和为,且,若,求正整数的最小值.
二、题型二:等比数列及其求和
9.(2024·上海松江·二模)设为数列的前项和,有以下两个命题:①若是公差不为零的等差数列且,,则是的必要非充分条件;②若是等比数列且,,则的充要条件是.那么( )
A.①是真命题,②是假命题B.①是假命题,①是真命题
C.①、②都是真命题D.①、②都是假命题
10.(2024·上海普陀·二模)设是数列的前项和,若数列满足:对任意的,存在大于1的整数,使得成立,则称数列是“数列”.现给出如下两个结论:①存在等差数列是“数列”;②任意等比数列都不是“数列”.则( )
A.①成立②成立B.①成立②不成立
C.①不成立②成立D.①不成立②不成立
11.(2024·上海青浦·二模)设是首项为,公比为q的等比数列的前项和,且,则( ).
A.B.C.D.
12.(2024·上海长宁·二模)设数列的前项和为,若存在非零常数,使得对任意正整数,都有,则称数列具有性质:①存在等差数列具有性质;②不存在等比数列具有性质;对于以上两个命题,下列判断正确的是( )
A.①真②真B.①真②假C.①假②真D.①假②假
13.(2024·上海普陀·二模)设等比数列的公比为,则“,,成等差数列”的一个充分非必要条件是 .
14.(2024·上海普陀·二模)设,,是正整数,是数列的前项和,,,若,且,记,则 .
15.(2024·上海徐汇·二模)已知数列的前项和为,若(是正整数),则 .
16.(2024·上海杨浦·二模)各项为正的等比数列满足:,,则通项公式为 .
17.(2024·上海静安·二模)已知等比数列的前项和为,则的值为 .
18.(2024·上海金山·二模)设公比为2的等比数列的前项和为,若,则 .
19.(2024·上海奉贤·二模)已知是公差的等差数列,其前项和为,是公比为实数的等比数列,,.
(1)求和的通项公式;
(2)设,计算.
三、题型三:数列极限及新定义问题
20.(2024·上海虹口·二模)已知等比数列是严格减数列,其前项和为,若成等差数列,则 .
21.(2024·上海黄浦·二模)设数列的前n项和为,若对任意的,都是数列中的项,则称数列为“T数列”.对于命题:①存在“T数列”,使得数列为公比不为1的等比数列;②对于任意的实数,都存在实数,使得以为首项、为公差的等差数列为“T数列”.下列判断正确的是( )
A.①和②均为真命题B.①和②均为假命题
C.①是真命题,②是假命题D.①是假命题,②是真命题
22.(2024·上海徐汇·二模)已知各项均不为0的数列满足(是正整数),,定义函数,是自然对数的底数.
(1)求证:数列是等差数列,并求数列的通项公式;
(2)记函数,其中.
(i)证明:对任意,;
(ii)数列满足,设为数列的前项和.数列的极限的严格定义为:若存在一个常数,使得对任意给定的正实数(不论它多么小),总存在正整数m满足:当时,恒有成立,则称为数列的极限.试根据以上定义求出数列的极限.
23.(2024·上海青浦·二模)若无穷数列满足:存在正整数,使得对一切正整数成立,则称是周期为的周期数列.
(1)若(其中正整数m为常数,),判断数列是否为周期数列,并说明理由;
(2)若,判断数列是否为周期数列,并说明理由;
(3)设是无穷数列,已知.求证:“存在,使得是周期数列”的充要条件是“是周期数列”.
24.(23-24高三下·上海浦东新·期中)已知函数及其导函数的定义域均为.设,曲线在点处的切线交轴于点.当时,设曲线在点处的切线交轴于点.依此类推,称得到的数列为函数关于的“数列”.
(1)若,是函数关于的“数列”,求的值;
(2)若,是函数关于的“数列”,记,证明:是等比数列,并求出其公比;
(3)若,则对任意给定的非零实数,是否存在,使得函数关于的“数列”为周期数列?若存在,求出所有满足条件的;若不存在,请说明理由.
相关试卷
这是一份专题03 函数(五大题型,16区二模真题速递)(学生卷)-2024年高考数学二模试题分类汇编(上海专用),共7页。试卷主要包含了题型一,题型二,题型三,题型四,题型五等内容,欢迎下载使用。
这是一份专题02 不等式(三大题型,16区二模新题速递)(解析卷)-2024年高考数学二模试题分类汇编(上海专用),共6页。试卷主要包含了题型一,题型二,题型三等内容,欢迎下载使用。
这是一份专题02 不等式(三大题型,16区二模新题速递)(学生卷)-2024年高考数学二模试题分类汇编(上海专用),共3页。试卷主要包含了题型一,题型二,题型三等内容,欢迎下载使用。