所属成套资源:2024年上海市各区高三二模分类汇编
- 专题10 概率统计(四大题型,16区二模新题速递)(学生卷)-2024年高考数学二模试题分类汇编(上海专用) 试卷 1 次下载
- 专题10 概率统计(四大题型,16区二模新题速递)(解析卷)-2024年高考数学二模试题分类汇编(上海专用) 试卷 1 次下载
- 专题11 复数(16区二模新题速递)(学生卷)-2024年高考数学二模试题分类汇编(上海专用) 试卷 0 次下载
- 专题11 复数(16区二模新题速递)(解析卷)-2024年高考数学二模试题分类汇编(上海专用) 试卷 0 次下载
- 专题12导数及其应用(三大题型,16区二模新题速递)(解析版)-2024年高考数学二模试题分类汇编(上海专用) 试卷 0 次下载
专题12导数及其应用(三大题型,16区二模新题速递)(原卷版)-2024年高考数学二模试题分类汇编(上海专用)
展开这是一份专题12导数及其应用(三大题型,16区二模新题速递)(原卷版)-2024年高考数学二模试题分类汇编(上海专用),共8页。试卷主要包含了题型一,题型三,题型四等内容,欢迎下载使用。
选 题 列 表
2024·上海杨浦·二模 2024·上海奉贤·二模
2024·上海浦东·二模 2024·上海青浦·二模
2024·上海黄浦·二模 2024·上海闵行·二模
2024·上海普陀·二模 2024·上海金山·二模
2024·上海徐汇·二模 2024·上海静安·二模
2024·上海松江·二模 2024·上海长宁·二模
2024·上海嘉定·二模 2024·上海崇明·二模
2024·上海虹口·二模 2024·上海宝山·二模
汇 编 目 录
TOC \ "1-3" \h \u \l "_Tc17332" 题型一:导数的几何意义 PAGEREF _Tc17332 \h 2
\l "_Tc2834" 题型三:导数在研究函数中的作用 PAGEREF _Tc2834 \h 3
\l "_Tc29106" 题型四:导数的综合应用 PAGEREF _Tc29106 \h 5
一、题型一:导数的几何意义
1.(2024·上海闵行·二模)函数在处的切线方程为 .
2.(2024·上海静安·二模)已知物体的位移(单位:m)与时间(单位:s)满足函数关系,则在时间段内,物体的瞬时速度为的时刻 (单位:s).
3.(2024·上海金山·二模)设(),若为奇函数,则曲线在点处的切线方程为 .
4.(2024·上海嘉定·二模)已知曲线上有一点,则过点的切线的斜率为 .
5.(2024·上海·二模)(1)在用“五点法”作出函数的大致图象的过程中,第一步需要将五个关键点列表,请完成下表:
(2)设实数且,求证:;(可以使用公式:)
(3)证明:等式对任意实数恒成立的充要条件是
6.(2024·上海奉贤·二模)已知定义域为的函数,其图象是连续的曲线,且存在定义域也为的导函数.
(1)求函数在点的切线方程;
(2)已知,当与满足什么条件时,存在非零实数,对任意的实数使得恒成立?
(3)若函数是奇函数,且满足.试判断对任意的实数是否恒成立,请说明理由.
二、题型三:导数在研究函数中的作用
7.(2024·上海奉贤·二模)如图,在等腰梯形中,∥,,,.点是线段上的一点,点在线段上,.
命题①:若,则随着的增大而减少.
命题②:设,若存在线段把梯形的面积分成上下相等的两个部分,那么,随着的增大而减少.
则下列选项正确的是( ).
A.命题①不正确,命题②正确B.命题①,命题②都不正确
C.命题①正确,命题②不正确D.命题①,命题②都正确
8.(2024·上海徐汇·二模)如图所示,已知满足,为所在平面内一点.定义点集.若存在点,使得对任意,满足恒成立,则的最大值为 .
9.(2024·上海徐汇·二模)如图,两条足够长且互相垂直的轨道相交于点,一根长度为的直杆的两端点分别在上滑动(两点不与点重合,轨道与直杆的宽度等因素均可忽略不计),直杆上的点满足,则面积的取值范围是 .
10.(2024·上海黄浦·二模)如图是某公园局部的平面示意图,图中的实线部分(它由线段与分别以为直径的半圆弧组成)表示一条步道.其中的点是线段上的动点,点O为线段的中点,点在以为直径的半圆弧上,且均为直角.若百米,则此步道的最大长度为 百米.
11.(2024·上海闵行·二模)对于任意的,且,不等式恒成立,则实数的取值范围为 .
12.(2024·上海静安·二模)已知实数,记.若函数在区间上的最小值为,则的值为 .
13.(2024·上海静安·二模)已知,记(且).
(1)当(是自然对数的底)时,试讨论函数的单调性和最值;
(2)试讨论函数的奇偶性;
(3)拓展与探究:
① 当在什么范围取值时,函数的图象在轴上存在对称中心?请说明理由;
②请提出函数的一个新性质,并用数学符号语言表达出来.(不必证明)
14.(2024·上海虹口·二模)若函数满足:对任意,都有,则称函数具有性质.
(1)设,,分别判断与是否具有性质?并说明理由;
(2)设函数具有性质,求实数的取值范围;
(3)已知函数具有性质,且图像是一条连续曲线,若在上是严格增函数,求证:是奇函数.
15.(2024·上海长宁·二模)设函数的定义域为,若存在实数,使得对于任意,都有,则称函数有上界,实数的最小值为函数的上确界;记集合{在区间上是严格增函数};
(1)求函数的上确界;
(2)若,求的最大值;
(3)设函数一定义域为;若,且有上界,求证:,且存在函数,它的上确界为0;
16.(23-24高三下·上海浦东新·期中)已知函数及其导函数的定义域均为.设,曲线在点处的切线交轴于点.当时,设曲线在点处的切线交轴于点.依此类推,称得到的数列为函数关于的“数列”.
(1)若,是函数关于的“数列”,求的值;
(2)若,是函数关于的“数列”,记,证明:是等比数列,并求出其公比;
(3)若,则对任意给定的非零实数,是否存在,使得函数关于的“数列”为周期数列?若存在,求出所有满足条件的;若不存在,请说明理由.
三、题型四:导数的综合应用
17.(2024·上海金山·二模)设,有如下两个命题:
①函数的图象与圆有且只有两个公共点;
②存在唯一的正方形,其四个顶点都在函数的图象上.
则下列说法正确的是( ).
A.①正确,②正确B.①正确,②不正确
C.①不正确,②正确D.①不正确,②不正确
18.(2024·上海虹口·二模)已知定义在上的函数的导数满足,给出两个命题:
①对任意,都有;②若的值域为,则对任意都有.
则下列判断正确的是( )
A.①②都是假命题B.①②都是真命题
C.①是假命题,②是真命题D.①是真命题,②是假命题
19.(23-24高三下·上海浦东新·期中)设,记,令有穷数列为零点的个数,则有以下两个结论:①存在,使得为常数列;②存在,使得为公差不为零的等差数列.那么( )
A.①正确,②错误B.①错误,②正确
C.①②都正确D.①②都错误
20.(2024·上海普陀·二模)已知,若关于的不等式的解集中有且仅有一个负整数,则的取值范围是 .
21.(2024·上海松江·二模)已知函数(为常数),记.
(1)若函数在处的切线过原点,求实数的值;
(2)对于正实数,求证:;
(3)当时,求证:.
22.(2024·上海虹口·二模)已知关于的不等式对任意均成立,则实数的取值范围为 .
23.(2024·上海普陀·二模)对于函数,和,,设,若,,且,皆有成立,则称函数与“具有性质”.
(1)判断函数,与是否“具有性质”,并说明理由;
(2)若函数,与“具有性质”,求的取值范围;
(3)若函数与“具有性质”,且函数在区间上存在两个零点,,求证.
24.(2024·上海徐汇·二模)已知各项均不为0的数列满足(是正整数),,定义函数,是自然对数的底数.
(1)求证:数列是等差数列,并求数列的通项公式;
(2)记函数,其中.
(i)证明:对任意,;
(ii)数列满足,设为数列的前项和.数列的极限的严格定义为:若存在一个常数,使得对任意给定的正实数(不论它多么小),总存在正整数m满足:当时,恒有成立,则称为数列的极限.试根据以上定义求出数列的极限.
25.(2024·上海杨浦·二模)函数、的定义域均为,若对任意两个不同的实数,,均有或成立,则称与为相关函数对.
(1)判断函数与是否为相关函数对,并说明理由;
(2)已知与为相关函数对,求实数的取值范围;
(3)已知函数与为相关函数对,且存在正实数,对任意实数,均有.求证:存在实数,使得对任意,均有.
26.(2024·上海黄浦·二模)若函数的图象上的两个不同点处的切线互相重合,则称该切线为函数的图象的“自公切线”,称这两点为函数的图象的一对“同切点”.
(1)分别判断函数与的图象是否存在“自公切线”,并说明理由;
(2)若,求证:函数有唯一零点且该函数的图象不存在“自公切线”;
(3)设,的零点为,,求证:“存在,使得点与是函数的图象的一对‘同切点’”的充要条件是“是数列中的项”.
27.(2024·上海闵行·二模)已知定义在上的函数的表达式为,其所有的零点按从小到大的顺序组成数列().
(1)求函数在区间上的值域;
(2)求证:函数在区间()上有且仅有一个零点;
(3)求证:.
28.(2024·上海崇明·二模)已知.
(1)若,求曲线在点处的切线方程;
(2)若函数存在两个不同的极值点,求证:;
(3)若,,数列满足,.求证:当时,.
29.(2024·上海嘉定·二模)已知常数,设,
(1)若,求函数的最小值;
(2)是否存在,且,,依次成等比数列,使得、、依次成等差数列?请说明理由.
(3)求证:“”是“对任意,,都有”的充要条件.
30.(2024·上海·二模)固定项链的两端,在重力的作用下项链所形成的曲线是悬链线.1691年,莱布尼茨等得出“悬链线”方程,其中为参数.当时,就是双曲余弦函数,悬链线的原理运用于悬索桥、架空电缆、双曲拱桥、拱坝等工程.类比三角函数的三种性质:①平方关系:;②两角和公式:,③导数:定义双曲正弦函数.
(1)直接写出,具有的类似①、②、③的三种性质(不需要证明);
(2)当时,双曲正弦函数的图像总在直线的上方,求直线斜率的取值范围;
(3)无穷数列满足,,是否存在实数,使得?若存在,求出的值,若不存在,说明理由.
0
0
1
相关试卷
这是一份专题07 解析几何(七大题型,16区二模新题速递)(学生卷)-2024年高考数学二模试题分类汇编(上海专用),共11页。试卷主要包含了题型一,题型二,题型三,题型四,题型五,题型六,题型七等内容,欢迎下载使用。
这是一份专题06 数列(三大题型,16区二模新题速递)(解析卷)-2024年高考数学二模试题分类汇编(上海专用),共22页。试卷主要包含了题型一,题型二,题型三等内容,欢迎下载使用。
这是一份专题06 数列(三大题型,16区二模新题速递)(学生卷)-2024年高考数学二模试题分类汇编(上海专用),共5页。试卷主要包含了题型一,题型二,题型三等内容,欢迎下载使用。