终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2024年河北中考数学试题及答案

    立即下载
    加入资料篮
    2024年河北中考数学试题及答案第1页
    2024年河北中考数学试题及答案第2页
    2024年河北中考数学试题及答案第3页
    还剩35页未读, 继续阅读
    下载需要15学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年河北中考数学试题及答案

    展开

    这是一份2024年河北中考数学试题及答案,共38页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共16个小题,共38分.1~6小题各3分,7~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)
    1.如图显示了某地连续5天的日最低气温,则能表示这5天日最低气温变化情况的是( )
    A.B.C.D.
    2.下列运算正确的是( )
    A.B.C.D.
    3.如图,与交于点O,和关于直线对称,点A,B的对称点分别是点C,D.下列不一定正确的是( )
    A.B.C.D.
    4.下列数中,能使不等式成立的x的值为( )
    A.1B.2C.3D.4
    5.观察图中尺规作图的痕迹,可得线段一定是的( )
    A.角平分线B.高线C.中位线D.中线
    6.如图是由个大小相同的正方体搭成的几何体,它的左视图是( )

    A. B. C. D.
    7.节能环保已成为人们的共识.淇淇家计划购买500度电,若平均每天用电x度,则能使用y天.下列说法错误的是( )
    A.若,则B.若,则
    C.若x减小,则y也减小D.若x减小一半,则y增大一倍
    8.若a,b是正整数,且满足,则a与b的关系正确的是( )
    A.B.C.D.
    9.淇淇在计算正数a的平方时,误算成a与2的积,求得的答案比正确答案小1,则( )
    A.1B.C.D.1或
    10.下面是嘉嘉作业本上的一道习题及解答过程:
    若以上解答过程正确,①,②应分别为( )
    A.,B.,
    C.,D.,
    11.直线l与正六边形的边分别相交于点M,N,如图所示,则( )
    A.B.C.D.
    12.在平面直角坐标系中,我们把一个点的纵坐标与横坐标的比值称为该点的“特征值”.如图,矩形位于第一象限,其四条边分别与坐标轴平行,则该矩形四个顶点中“特征值”最小的是( )
    A.点AB.点BC.点CD.点D
    13.已知A为整式,若计算的结果为,则( )
    A.xB.yC.D.
    14.扇文化是中华优秀传统文化的组成部分,在我国有着深厚的底蕴.如图,某折扇张开的角度为时,扇面面积为、该折扇张开的角度为时,扇面面积为,若,则与关系的图象大致是( )
    A.B.C.D.
    15.“铺地锦”是我国古代一种乘法运算方法,可将多位数乘法运算转化为一位数乘法和简单的加法运算.淇淇受其启发,设计了如图1所示的“表格算法”,图1表示,运算结果为3036.图2表示一个三位数与一个两位数相乘,表格中部分数据被墨迹覆盖,根据图2中现有数据进行推断,正确的是( )
    A.“20”左边的数是16B.“20”右边的“□”表示5
    C.运算结果小于6000D.运算结果可以表示为
    16.平面直角坐标系中,我们把横、纵坐标都是整数,且横、纵坐标之和大于0的点称为“和点”.将某“和点”平移,每次平移的方向取决于该点横、纵坐标之和除以3所得的余数(当余数为0时,向右平移;当余数为1时,向上平移;当余数为2时,向左平移),每次平移1个单位长度.
    若“和点”Q按上述规则连续平移16次后,到达点,则点Q的坐标为( )
    A.或B.或C.或D.或
    二、填空题(本大题共3个小题,共10分.17小题2分,18~19小题各4分,每空2分)
    17.某校生物小组的9名同学各用100粒种子做发芽实验,几天后观察并记录种子的发芽数分别为:89,73,90,86,75,86,89,95,89,以上数据的众数为 .
    18.已知a,b,n均为正整数.
    (1)若,则 ;
    (2)若,则满足条件的a的个数总比b的个数少 个.
    19.如图,的面积为,为边上的中线,点,,,是线段的五等分点,点,,是线段的四等分点,点是线段的中点.
    (1)的面积为 ;
    (2)的面积为 .
    三、解答题(本大题共7个小题,共72分.解答应写出文字说明、证明过程或演算步骤)
    20.如图,有甲、乙两条数轴.甲数轴上的三点A,B,C所对应的数依次为,2,32,乙数轴上的三点D,E,F所对应的数依次为0,x,12.
    (1)计算A,B,C三点所对应的数的和,并求的值;
    (2)当点A与点D上下对齐时,点B,C恰好分别与点E,F上下对齐,求x的值.
    21.甲、乙、丙三张卡片正面分别写有,除正面的代数式不同外,其余均相同.
    (1)将三张卡片背面向上并洗匀,从中随机抽取一张,当时,求取出的卡片上代数式的值为负数的概率;
    (2)将三张卡片背面向上并洗匀,从中随机抽取一张,放回后重新洗匀,再随机抽取一张.请在表格中补全两次取出的卡片上代数式之和的所有可能结果(化为最简),并求出和为单项式的概率.
    22.中国的探月工程激发了同学们对太空的兴趣.某晚,淇淇在家透过窗户的最高点P恰好看到一颗星星,此时淇淇距窗户的水平距离,仰角为;淇淇向前走了后到达点D,透过点P恰好看到月亮,仰角为,如图是示意图.已知,淇淇的眼睛与水平地面的距离,点P到的距离,的延长线交于点E.(注:图中所有点均在同一平面)
    (1)求的大小及的值;
    (2)求的长及的值.
    23.情境 图1是由正方形纸片去掉一个以中心O为顶点的等腰直角三角形后得到的.
    该纸片通过裁剪,可拼接为图2所示的钻石型五边形,数据如图所示.
    (说明:纸片不折叠,拼接不重叠无缝隙无剩余)
    操作 嘉嘉将图1所示的纸片通过裁剪,拼成了钻石型五边形.
    如图3,嘉嘉沿虚线,裁剪,将该纸片剪成①,②,③三块,再按照图4所示进行拼接.根据嘉嘉的剪拼过程,解答问题:
    (1)直接写出线段的长;
    (2)直接写出图3中所有与线段相等的线段,并计算的长.
    探究淇淇说:将图1所示纸片沿直线裁剪,剪成两块,就可以拼成钻石型五边形.
    请你按照淇淇的说法设计一种方案:在图5所示纸片的边上找一点P(可以借助刻度尺或圆规),画出裁剪线(线段)的位置,并直接写出的长.
    24.某公司为提高员工的专业能力,定期对员工进行技能测试,考虑多种因素影响,需将测试的原始成绩x(分)换算为报告成绩y(分).已知原始成绩满分150分,报告成绩满分100分、换算规则如下:
    当时,;
    当时,.
    (其中p是小于150的常数,是原始成绩的合格分数线,80是报告成绩的合格分数线)
    公司规定报告成绩为80分及80分以上(即原始成绩为p及p以上)为合格.
    (1)甲、乙的原始成绩分别为95分和130分,若,求甲、乙的报告成绩;
    (2)丙、丁的报告成绩分别为92分和64分,若丙的原始成绩比丁的原始成绩高40分,请推算p的值:
    (3)下表是该公司100名员工某次测试的原始成绩统计表:
    ①直接写出这100名员工原始成绩的中位数;
    ②若①中的中位数换算成报告成绩为90分,直接写出该公司此次测试的合格率.
    25.已知的半径为3,弦,中,.在平面上,先将和按图1位置摆放(点B与点N重合,点A在上,点C在内),随后移动,使点B在弦上移动,点A始终在上随之移动,设.
    (1)当点B与点N重合时,求劣弧的长;
    (2)当时,如图2,求点B到的距离,并求此时x的值;
    (3)设点O到的距离为d.
    ①当点A在劣弧上,且过点A的切线与垂直时,求d的值;
    ②直接写出d的最小值.
    26.如图,抛物线过点,顶点为Q.抛物线(其中t为常数,且),顶点为P.
    (1)直接写出a的值和点Q的坐标.
    (2)嘉嘉说:无论t为何值,将的顶点Q向左平移2个单位长度后一定落在上.
    淇淇说:无论t为何值,总经过一个定点.
    请选择其中一人的说法进行说理.
    (3)当时,
    ①求直线PQ的解析式;
    ②作直线,当l与的交点到x轴的距离恰为6时,求l与x轴交点的横坐标.
    (4)设与的交点A,B的横坐标分别为,且.点M在上,横坐标为.点N在上,横坐标为.若点M是到直线PQ的距离最大的点,最大距离为d,点N到直线PQ的距离恰好也为d,直接用含t和m的式子表示n.
    已知:如图,中,,平分的外角,点是的中点,连接并延长交于点,连接.
    求证:四边形是平行四边形.
    证明:∵,∴.
    ∵,,,
    ∴①______.
    又∵,,
    ∴(②______).
    ∴.∴四边形是平行四边形.
    例:“和点”按上述规则连续平移3次后,到达点,其平移过程如下:
    原始成绩(分)
    95
    100
    105
    110
    115
    120
    125
    130
    135
    140
    145
    150
    人数
    1
    2
    2
    5
    8
    10
    7
    16
    20
    15
    9
    5
    参考答案
    1.A
    【分析】本题考查了正负数的大小比较,熟练掌握正负数大小比较的方法解题的关键.
    由五日气温为得到,,,则气温变化为先下降,然后上升,再上升,再下降.
    【详解】解:由五日气温为得到,,
    ∴气温变化为先下降,然后上升,再上升,再下降.
    故选:A.
    2.C
    【分析】本题考查整式的运算,根据合并同类项,单项式乘以单项式,积的乘方,同底数幂的除法依次对各选项逐一分析判断即可.解题的关键是掌握整式运算的相关法则.
    【详解】解:A.,不是同类项,不能合并,故此选项不符合题意;
    B.,故此选项不符合题意;
    C.,故此选项符合题意;
    D.,故此选项不符合题意.
    故选:C.
    3.A
    【分析】本题考查了轴对称图形的性质,平行线的判定,熟练掌握知识点是解题的关键.
    根据轴对称图形的性质即可判断B、C选项,再根据垂直于同一条直线的两条直线平行即可判断选项D.
    【详解】解:由轴对称图形的性质得到,,
    ∴,
    ∴B、C、D选项不符合题意,
    故选:A.
    4.A
    【分析】本题考查了解不等式,不等式的解,熟练掌握解不等式是解题的关键.解不等式,得到,以此判断即可.
    【详解】解:∵,
    ∴.
    ∴符合题意的是A
    故选A.
    5.B
    【分析】本题考查的是三角形的高的定义,作线段的垂线,根据作图痕迹可得,从而可得答案.
    【详解】解:由作图可得:,
    ∴线段一定是的高线;
    故选B
    6.D
    【分析】本题考查简单组合体的三视图,左视图每一列的小正方体个数,由该方向上的小正方体个数最多的那个来确定,通过观察即可得出结论.掌握几何体三种视图之间的关系是解题的关键.
    【详解】解:通过左边看可以确定出左视图一共有列,每列上小正方体个数从左往右分别为、、.
    故选:D.
    7.C
    【分析】本题考查的是反比例函数的实际应用,先确定反比例函数的解析式,再逐一分析判断即可.
    【详解】解:∵淇淇家计划购买500度电,平均每天用电x度,能使用y天.
    ∴,
    ∴,
    当时,,故A不符合题意;
    当时,,故B不符合题意;
    ∵,,
    ∴当x减小,则y增大,故C符合题意;
    若x减小一半,则y增大一倍,表述正确,故D不符合题意;
    故选:C.
    8.A
    【分析】本题考查了同底数幂的乘法,幂的乘方的运算的应用,熟练掌握知识点是解题的关键.
    由题意得:,利用同底数幂的乘法,幂的乘方化简即可.
    【详解】解:由题意得:,
    ∴,
    ∴,
    故选:A.
    9.C
    【分析】本题考查了一元二次方程的应用,解一元二次方程,熟练掌握知识点是解题的关键.
    由题意得方程,利用公式法求解即可.
    【详解】解:由题意得:,
    解得:或(舍)
    故选:C.
    10.D
    【分析】本题考查平行四边形的判定,全等三角形的判定与性质,根据等边对等角得,根据三角形外角的性质及角平分线的定义可得,证明,得到,再结合中点的定义得出,即可得证.解题的关键是掌握:对角线互相平分的四边形是平行四边形.
    【详解】证明:∵,∴.
    ∵,,,
    ∴①.
    又∵,,
    ∴(②).
    ∴.∴四边形是平行四边形.
    故选:D.
    11.B
    【分析】本题考查了多边形的内角和,正多边形的每个内角,邻补角,熟练掌握知识点是解决本题的关键.
    先求出正六边形的每个内角为,再根据六边形的内角和为即可求解的度数,最后根据邻补角的意义即可求解.
    【详解】解:正六边形每个内角为:,
    而六边形的内角和也为,
    ∴,
    ∴,
    ∵,
    ∴,
    故选:B.
    12.B
    【分析】本题考查的是矩形的性质,坐标与图形,分式的值的大小比较,设,,,可得,,,再结合新定义与分式的值的大小比较即可得到答案.
    【详解】解:设,,,
    ∵矩形,
    ∴,,
    ∴,,,
    ∵,而,
    ∴该矩形四个顶点中“特征值”最小的是点B;
    故选:B.
    13.A
    【分析】本题考查了分式的加减运算,分式的通分,平方差公式,熟练掌握分式的加减运算法则是解题的关键.
    由题意得,对进行通分化简即可.
    【详解】解:∵的结果为,
    ∴,
    ∴,
    ∴,
    故选:A.
    14.C
    【分析】本题考查正比例函数的应用,扇形的面积,设该扇面所在圆的半径为,根据扇形的面积公式表示出,进一步得出,再代入即可得出结论.掌握扇形的面积公式是解题的关键.
    【详解】解:设该扇面所在圆的半径为,

    ∴,
    ∵该折扇张开的角度为时,扇面面积为,
    ∴,
    ∴,
    ∴是的正比例函数,
    ∵,
    ∴它的图像是过原点的一条射线.
    故选:C.
    15.D
    【分析】本题考查了整式的加法运算,整式的乘法运算,理解题意,正确的逻辑推理时解决本题的关键.
    设一个三位数与一个两位数分别为和,则,即,可确定时,则,由题意可判断A、B选项,根据题意可得运算结果可以表示为:,故可判断C、D选项.
    【详解】解:设一个三位数与一个两位数分别为和
    如图:
    则由题意得:

    ∴,即,
    ∴当时,不是正整数,不符合题意,故舍;
    当时,则,如图:

    ∴A、“20”左边的数是,故本选项不符合题意;
    B、“20”右边的“□”表示4,故本选项不符合题意;
    ∴上面的数应为,如图:
    ∴运算结果可以表示为:,
    ∴D选项符合题意,
    当时,计算的结果大于6000,故C选项不符合题意,
    故选:D.
    16.D
    【分析】本题考查了坐标内点的平移运动,熟练掌握知识点,利用反向运动理解是解决本题的关键.
    先找出规律若“和点”横、纵坐标之和除以3所得的余数为0时,先向右平移1个单位,之后按照向上、向左,向上、向左不断重复的规律平移,按照的反向运动理解去分类讨论:①先向右1个单位,不符合题意;②先向下1个单位,再向右平移,当平移到第15次时,共计向下平移了8次,向右平移了7次,此时坐标为,那么最后一次若向右平移则为,若向左平移则为.
    【详解】解:由点可知横、纵坐标之和除以3所得的余数为1,继而向上平移1个单位得到,此时横、纵坐标之和除以3所得的余数为2,继而向左平移1个单位得到,此时横、纵坐标之和除以3所得的余数为1,又要向上平移1个单位,因此发现规律为若“和点”横、纵坐标之和除以3所得的余数为0时,先向右平移1个单位,之后按照向上、向左,向上、向左不断重复的规律平移,
    若“和点”Q按上述规则连续平移16次后,到达点,则按照“和点”反向运动16次求点Q坐标理解,可以分为两种情况:
    ①先向右1个单位得到,此时横、纵坐标之和除以3所得的余数为0,应该是向右平移1个单位得到,故矛盾,不成立;
    ②先向下1个单位得到,此时横、纵坐标之和除以3所得的余数为1,则应该向上平移1个单位得到,故符合题意,那么点先向下平移,再向右平移,当平移到第15次时,共计向下平移了8次,向右平移了7次,此时坐标为,即,那么最后一次若向右平移则为,若向左平移则为,
    故选:D.
    17.89
    【分析】本题考查了众数,众数是一组数据中次数出现最多的数.
    根据众数的定义求解即可判断.
    【详解】解:几天后观察并记录种子的发芽数分别为:89,73,90,86,75,86,89,95,89,
    89出现的次数最多,
    以上数据的众数为89.
    故答案为:89.
    18.
    【分析】本题考查的是无理数的估算以及规律探究问题,掌握探究的方法是解本题的关键;
    (1)由即可得到答案;
    (2)由,,为连续的三个自然数,,可得,,再利用完全平方数之间的数据个数的特点探究规律即可得到答案.
    【详解】解:(1)∵,而,
    ∴;
    故答案为:;
    (2)∵a,b,n均为正整数.
    ∴,,为连续的三个自然数,而,
    ∴,,
    观察,,,,,,,,,,,
    而,,,,,
    ∴与之间的整数有个,
    与之间的整数有个,
    ∴满足条件的a的个数总比b的个数少(个),
    故答案为:.
    19.
    【分析】(1)根据三角形中线的性质得,证明,根据全等三角形的性质可得结论;
    (2)证明,得,推出、、三点共线,得,继而得出,,证明,得,推出,最后代入即可.
    【详解】解:(1)连接、、、、,
    ∵的面积为,为边上的中线,
    ∴,
    ∵点,,,是线段的五等分点,
    ∴,
    ∵点,,是线段的四等分点,
    ∴,
    ∵点是线段的中点,
    ∴,
    在和中,

    ∴,
    ∴,,
    ∴的面积为,
    故答案为:;
    (2)在和中,

    ∴,
    ∴,,
    ∵,
    ∴,
    ∴、、三点共线,
    ∴,
    ∵,
    ∴,
    ∵,,
    ∴,
    在和中,
    ∵,,
    ∴,
    ∴,
    ∴,
    ∵,
    ∴,
    ∴,
    ∴的面积为,
    故答案为:.
    【点睛】本题考查三角形中线的性质,全等三角形的判定与性质,相似三角形的判定与性质,等分点的意义,三角形的面积.掌握三角形中线的性质是解题的关键.
    20.(1),
    (2)
    【分析】本题考查的是数轴上两点之间的距离的含义,一元一次方程的应用,理解题意是解本题的关键;
    (1)直接列式求解三个数的和即可,再分别计算,从而可得答案;
    (2)由题意可得,对应线段是成比例的,再建立方程求解即可.
    【详解】(1)解:∵甲数轴上的三点A,B,C所对应的数依次为,2,32,
    ∴,,,
    ∴;
    (2)解:∵点A与点D上下对齐时,点B,C恰好分别与点E,F上下对齐,
    ∴,
    ∴,
    解得:;
    21.(1)
    (2)填表见解析,
    【分析】(1)先分别求解三个代数式当时的值,再利用概率公式计算即可;
    (2)先把表格补充完整,结合所有可能的结果数与符合条件的结果数,利用概率公式计算即可.
    【详解】(1)解:当时,
    ,,,
    ∴取出的卡片上代数式的值为负数的概率为:;
    (2)解:补全表格如下:
    ∴所有等可能的结果数有种,和为单项式的结果数有种,
    ∴和为单项式的概率为.
    【点睛】本题考查的是代数式的值,正负数的含义,多项式与单项式的概念,利用列表法求解简单随机事件的概率,掌握基础知识是解本题的关键.
    22.(1),
    (2),
    【分析】本题考查的是解直角三角形的应用,理解仰角与俯角的含义以及三角函数的定义是解本题的关键;
    (1)根据题意先求解,再结合等腰三角形的性质与正切的定义可得答案;
    (2)利用勾股定理先求解,如图,过作于,结合,设,则,再建立方程求解,即可得到答案.
    【详解】(1)解:由题意可得:,,,
    ,,
    ∴,,,
    ∴,
    ∴,;
    (2)解:∵,,
    ∴,
    如图,过作于,
    ∵,设,则,
    ∴,
    解得:,
    ∴,
    ∴.
    23.(1);(2),;的长为或.
    【分析】本题考查的是正方形的性质,等腰直角三角形的判定与性质,勾股定理的应用,二次根式的混合运算,本题要求学生的操作能力要好,想象能力强,有一定的难度.
    (1)如图,过作于,结合题意可得:四边形为矩形,可得,由拼接可得:,可得,,为等腰直角三角形,为等腰直角三角形,设,则,再进一步解答即可;
    (2)由为等腰直角三角形,;求解,再分别求解;可得答案,如图,以为圆心,为半径画弧交于,交于,则直线为分割线,或以圆心,为半径画弧,交于,交于,则直线为分割线,再进一步求解的长即可.
    【详解】解:如图,过作于,
    结合题意可得:四边形为矩形,
    ∴,
    由拼接可得:,
    由正方形的性质可得:,
    ∴,,为等腰直角三角形,
    ∴为等腰直角三角形,
    设,
    ∴,
    ∴,,
    ∵正方形的边长为,
    ∴对角线的长,
    ∴,
    ∴,
    解得:,
    ∴;
    (2)∵为等腰直角三角形,;
    ∴,
    ∴,
    ∵,

    ∴;
    如图,以为圆心,为半径画弧交于,交于,则直线为分割线,
    此时,,符合要求,
    或以圆心,为半径画弧,交于,交于,则直线为分割线,
    此时,,
    ∴,
    综上:的长为或.
    24.(1)甲、乙的报告成绩分别为76,92分
    (2)125
    (3)①130;②
    【分析】(1)当时,甲的报告成绩为:分,乙的报告成绩为:分;
    (2)设丙的原始成绩为分,则丁的原始成绩为分,①时和②时均不符合题意,③时,,,解得;
    (3)①共计100名员工,且成绩已经排列好,则中位数是第50,51名员工成绩的平均数,由表格得第50,51名员工成绩都是130分,故中位数为130;②当时,则,解得,故不成立,舍;当时,则,解得,符合题意,而由表格得到原始成绩为110及110以上的人数为,故合格率为:.
    【详解】(1)解:当时,甲的报告成绩为:分,
    乙的报告成绩为:分;
    (2)解:设丙的原始成绩为分,则丁的原始成绩为分,
    ①时,,,
    由①②得,
    ∴,
    ∴,故不成立,舍;
    ②时,,,
    由③④得:,
    ∴,
    ∴,
    ∴,
    ∴,故不成立,舍;
    ③时,,

    联立⑤⑥解得:
    ,且符合题意,
    综上所述;
    (3)解:①共计100名员工,且成绩已经排列好,
    ∴中位数是第50,51名员工成绩的平均数,
    由表格得第50,51名员工成绩都是130分,
    ∴中位数为130;
    ②当时,则,解得,故不成立,舍;
    当时,则,解得,符合题意,
    ∴ 由表格得到原始成绩为110及110以上的人数为,
    ∴合格率为:.
    【点睛】本题考查了函数关系式,自变量与函数值,中位数的定义,合格率,解分式方程,熟练知识点,正确理解题意是解决本题的关键.
    25.(1)
    (2)点B到的距离为;
    (3)①;②
    【分析】(1)如图,连接,,先证明为等边三角形,再利用等边三角形的性质结合弧长公式可得答案;
    (2)过作于,过作于,连接,证明四边形是矩形,可得,,再结合勾股定理可得答案;
    (3)①如图,由过点A的切线与垂直,可得过圆心,过作于,过作于,而,可得四边形为矩形,可得,再进一步利用勾股定理与锐角三角函数可得答案;②如图,当为中点时,过作于,过作于, ,此时最短,如图,过作于,而,证明,求解,再结合等角的三角函数可得答案.
    【详解】(1)解:如图,连接,,
    ∵的半径为3,,
    ∴,
    ∴为等边三角形,
    ∴,
    ∴的长为;
    (2)解:过作于,过作于,连接,
    ∵,
    ∴,
    ∴四边形是矩形,
    ∴,,
    ∵,,
    ∴,而,
    ∴,
    ∴点B到的距离为;
    ∵,,
    ∴,
    ∴,
    ∴;
    (3)解:①如图,∵过点A的切线与垂直,
    ∴过圆心,
    过作于,过作于,而,
    ∴四边形为矩形,
    ∴,
    ∵,,
    ∴,
    ∴,
    ∴,
    ∴,即;
    ②如图,当为中点时,
    过作于,过作于,
    ∴,
    ∴,此时最短,
    如图,过作于,而,
    ∵为中点,则,
    ∴由(2)可得,
    ∴,
    ∴,
    ∵,
    ∴,
    ∴,
    ∴,
    ∴,
    设,则,
    ∴,
    解得:(不符合题意的根舍去),
    ∴的最小值为.
    【点睛】本题属于圆的综合题,难度很大,考查了勾股定理的应用,矩形的判定与性质,垂径定理的应用,锐角三角函数的应用,切线的性质,熟练的利用数形结合的方法,作出合适的辅助线是解本题的关键.
    26.(1),
    (2)两人说法都正确,理由见解析
    (3)①;②或
    (4)
    【分析】(1)直接利用待定系数法求解抛物线的解析式,再化为顶点式即可得到顶点坐标;
    (2)把向左平移2个单位长度得到对应点的坐标为:,再检验即可,再根据函数化为,可得函数过定点;
    (3)①先求解的坐标,再利用待定系数法求解一次函数的解析式即可;②如图,当(等于6两直线重合不符合题意),可得,可得交点,交点,再进一步求解即可;
    (4)如图,由题意可得是由通过旋转,再平移得到的,两个函数图象的形状相同,如图,连接交于,连接,,,,可得四边形是平行四边形,当点M是到直线PQ的距离最大的点,最大距离为d,点N到直线PQ的距离恰好也为d,此时与重合,与重合,再进一步利用中点坐标公式解答即可.
    【详解】(1)解:∵抛物线过点,顶点为Q.
    ∴,
    解得:,
    ∴抛物线为:,
    ∴;
    (2)解:把向左平移2个单位长度得到对应点的坐标为:,
    当时,
    ∴,
    ∴在上,
    ∴嘉嘉说法正确;


    当时,,
    ∴过定点;
    ∴淇淇说法正确;
    (3)解:①当时,

    ∴顶点,而,
    设为,
    ∴,
    解得:,
    ∴为;
    ②如图,当(等于6两直线重合不符合题意),
    ∴,
    ∴交点,交点,
    由直线,设直线为,
    ∴,
    解得:,
    ∴直线为:,
    当时,,
    此时直线与轴交点的横坐标为,
    同理当直线过点,
    直线为:,
    当时,,
    此时直线与轴交点的横坐标为,
    (4)解:如图,∵,,
    ∴是由通过旋转,再平移得到的,两个函数图象的形状相同,
    如图,连接交于,连接,,,,
    ∴四边形是平行四边形,
    当点M是到直线PQ的距离最大的点,最大距离为d,点N到直线PQ的距离恰好也为d,
    此时与重合,与重合,
    ∵,,
    ∴的横坐标为,
    ∵,,
    ∴的横坐标为,
    ∴,
    解得:;
    【点睛】本题考查的是利用待定系数法求解二次函数的解析式,二次函数的性质,一次函数的综合应用,二次函数的平移与旋转,以及特殊四边形的性质,理解题意,利用数形结合的方法解题是关键.

    相关试卷

    2022年河北中考数学试题及答案:

    这是一份2022年河北中考数学试题及答案,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2022年河北廊坊中考数学试题及答案:

    这是一份2022年河北廊坊中考数学试题及答案,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2022年河北保定中考数学试题及答案:

    这是一份2022年河北保定中考数学试题及答案,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map