所属成套资源:中考数学第一轮专题复习真题分点透练(全国通用)(原卷版+解析)
中考数学第一轮专题复习真题分点透练(全国通用)第二十五讲图形的对称、平移、旋转与位似(原卷版+解析)
展开这是一份中考数学第一轮专题复习真题分点透练(全国通用)第二十五讲图形的对称、平移、旋转与位似(原卷版+解析),共41页。
1.(2022•德州)下列图形是中心对称图形的是( )
A.B.C.D.
2.(2022•淄博)下列图案中,既是轴对称图形又是中心对称图形的是( )
A.B.
C.D.
类型二 与轴对称有关的判断
3.(2022•巴中)七巧板是我国的一种传统智力玩具,下列用七巧板拼成的图形是轴对称图形的是( )
A.B.
C.D.
4.(2022•日照)山东省第二十五届运动会将于2022年8月25日在日照市开幕,“全民健身与省运同行”成为日照市当前的运动主题.在下列给出的运动图片中,是轴对称图形的是( )
A.B.
C.D.
5.(2022•北京)图中的图形为轴对称图形,该图形的对称轴的条数为( )
A.1B.2C.3D.5
6.(2022•常州)在平面直角坐标系xOy中,点A与点A1关于x轴对称,点A与点A2关于y轴对称.已知点A1(1,2),则点A2的坐标是( )
A.(﹣2,1)B.(﹣2,﹣1)C.(﹣1,2)D.(﹣1,﹣2)
7.(2022•邵阳)下列四种图形中,对称轴条数最多的是( )
A.等边三角形B.圆C.长方形D.正方形
8.(2022•台州)如图是战机在空中展示的轴对称队形.以飞机B,C所在直线为x轴、队形的对称轴为y轴,建立平面直角坐标系.若飞机E的坐标为(40,a),则飞机D的坐标为( )
A.(40,﹣a)B.(﹣40,a)C.(﹣40,﹣a)D.(a,﹣40)
9.(2022•六盘水)如图,将一张长方形纸对折,再对折,然后沿图中虚线剪下,剪下的图形展开后可得到( )
A.三角形B.梯形C.正方形D.五边形
10.(2022•资阳)如图,正方形ABCD的对角线交于点O,点E是直线BC上一动点.若AB=4,则AE+OE的最小值是( )
A.B.C.D.
11.(2022•菏泽)如图,在菱形ABCD中,AB=2,∠ABC=60°,M是对角线BD上的一个动点,CF=BF,则MA+MF的最小值为( )
A.1B.C.D.2
12.(2022•黔西南州)在如图所示的Rt△ABC纸片中,∠ACB=90°,D是斜边AB的中点,把纸片沿着CD折叠,点B到点E的位置,连接AE.若AE∥DC,∠B=α,则∠EAC等于( )
A.αB.90°﹣αC.αD.90°﹣2α
13.(2022•济宁)如图,三角形纸片ABC中,∠BAC=90°,AB=2,AC=3.沿过点A的直线将纸片折叠,使点B落在边BC上的点D处;再折叠纸片,使点C与点D重合,若折痕与AC的交点为E,则AE的长是( )
A.B.C.D.
14.(2022•西藏)如图,在菱形纸片ABCD中,E是BC边上一点,将△ABE沿直线AE翻折,使点B落在B'上,连接DB'.已知∠C=120°,∠BAE=50°,则∠AB'D的度数为( )
A.50°B.60°C.80°D.90°
15.(2022•牡丹江)下列图形是黄金矩形的折叠过程:
第一步,如图(1),在一张矩形纸片一端折出一个正方形,然后把纸片展平;
第二步,如图(2),把正方形折成两个相等的矩形再把纸片展平;
第三步,折出内侧矩形的对角线AB,并把AB折到图(3)中所示的AD处;
第四步,如图(4),展平纸片,折出矩形BCDE就是黄金矩形.
则下列线段的比中:①,②,③,④,比值为的是( )
A.①②B.①③C.②④D.②③
16.(2022•营口)如图,在矩形ABCD中,点M在AB边上,把△BCM沿直线CM折叠,使点B落在AD边上的点E处,连接EC,过点B作BF⊥EC,垂足为F,若CD=1,CF=2,则线段AE的长为( )
A.﹣2B.﹣1C.D.
17.(2022•毕节市)矩形纸片ABCD中,E为BC的中点,连接AE,将△ABE沿AE折叠得到△AFE,连接CF.若AB=4,BC=6,则CF的长是( )
A.3B.C.D.
18.(2022•台湾)如图1为一张正三角形纸片ABC,其中D点在AB上,E点在BC上.今以DE为折线将B点往右折后,BD、BE分别与AC相交于F点、G点,如图2所示.若AD=10,AF=16,DF=14,BF=8,则CG的长度为多少?( )
A.7B.8C.9D.10
19.(2022•河北)如图,将△ABC折叠,使AC边落在AB边上,展开后得到折痕l,则l是△ABC的( )
A.中线B.中位线C.高线D.角平分线
命题点3 图形的平移及其相关计算
20.(2022•海南)如图,点A(0,3)、B(1,0),将线段AB平移得到线段DC,若∠ABC=90°,BC=2AB,则点D的坐标是( )
A.(7,2)B.(7,5)C.(5,6)D.(6,5)
21.(2022•福建)如图,现有一把直尺和一块三角尺,其中∠ABC=90°,∠CAB=60°,AB=8,点A对应直尺的刻度为12.将该三角尺沿着直尺边缘平移,使得△ABC移动到△A′B′C′,点A′对应直尺的刻度为0,则四边形ACC′A′的面积是( )
A.96B.96C.192D.160
22.(2022•淄博)如图,在平面直角坐标系中,平移△ABC至△A1B1C1的位置.若顶点A(﹣3,4)的对应点是A1(2,5),则点B(﹣4,2)的对应点B1的坐标是 .
23.(2022•台州)如图,△ABC的边BC长为4cm.将△ABC平移2cm得到△A'B'C',且BB'⊥BC,则阴影部分的面积为 cm2.
24.(2022•毕节市)如图,在平面直角坐标系中,把一个点从原点开始向上平移1个单位,再向右平移1个单位,得到点A1(1,1);把点A1向上平移2个单位,再向左平移2个单位,得到点A2(﹣1,3);把点A2向下平移3个单位,再向左平移3个单位,得到点A3(﹣4,0);把点A3向下平移4个单位,再向右平移4个单位,得到点A4(0,﹣4),…;按此做法进行下去,则点A10的坐标为 .
命题点4 图形的旋转及其相关计算
25.(2022•上海)有一个正n边形旋转90°后与自身重合,则n为( )
A.6B.9C.12D.15
26.(2022•河池)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,将Rt△ABC绕点B顺时针旋转90°得到Rt△A'B'C'.在此旋转过程中Rt△ABC所扫过的面积为( )
A.25π+24B.5π+24C.25πD.5π
27.(2022•长沙)在平面直角坐标系中,点(5,1)关于原点对称的点的坐标是( )
A.(﹣5,1)B.(5,﹣1)C.(1,5)D.(﹣5,﹣1)
28.(2022•天津)如图,在△ABC中,AB=AC,若M是BC边上任意一点,将△ABM绕点A逆时针旋转得到△ACN,点M的对应点为点N,连接MN,则下列结论一定正确的是( )
A.AB=ANB.AB∥NCC.∠AMN=∠ACND.MN⊥AC
29.(2022•内蒙古)如图,边长为1的正方形ABCD绕点A逆时针旋转30°到正方形AB′C′D′,图中阴影部分的面积为( )
A.B.C.1﹣D.1﹣
30.(2022•益阳)如图,已知△ABC中,∠CAB=20°,∠ABC=30°,将△ABC绕A点逆时针旋转50°得到△AB′C′,以下结论:①BC=B′C′,②AC∥C′B′,③C′B′⊥BB′,④∠ABB′=∠ACC′,正确的有( )
A.①②③B.①②④C.①③④D.②③④
31.(2022•西宁)如图,在△ABC中,∠C=90°,∠B=30°,AB=6,将△ABC绕点A逆时针方向旋转15°得到△AB′C′,B′C′交AB于点E,则B′E= .
32.(2022•黄石)如图,等边△ABC中,AB=10,点E为高AD上的一动点,以BE为边作等边△BEF,连接DF,CF,则∠BCF= ,FB+FD的最小值为 .
命题点5 图形的位似及其相关计算
33.(2022•徐州)如图,若方格纸中每个小正方形的边长均为1,则阴影部分的面积为( )
A.5B.6C.D.
34.(2022•宁夏)如图,将三角尺直立举起靠近墙面,打开手机手电筒照射三角尺,在墙面上形成影子.则三角尺与影子之间属于以下哪种图形变换( )
A.平移B.轴对称C.旋转D.位似
35.(2022•衢州)西周数学家商高总结了用“矩”(如图1)测量物高的方法:把矩的两边放置成如图2的位置,从矩的一端A(人眼)望点E,使视线通过点C,记人站立的位置为点B,量出BG长,即可算得物高EG.令BG=x(m),EG=y(m),若a=30cm,b=60cm,AB=1.6m,则y关于x的函数表达式为( )
A.y=xB.y=x+1.6
C.y=2x+1.6D.y=+1.6
36.(2022•巴中)如图,在平面直角坐标系中,C为△AOB的OA边上一点,AC:OC=1:2,过C作CD∥OB交AB于点D,C、D两点纵坐标分别为1、3,则B点的纵坐标为( )
A.4B.5C.6D.7
37.(2022•贵阳)如图,在△ABC中,D是AB边上的点,∠B=∠ACD,AC:AB=1:2,则△ADC与△ACB的周长比是( )
A.1:B.1:2C.1:3D.1:4
38.(2022•临沂)如图,在△ABC中,DE∥BC,=,若AC=6,则EC=( )
A.B.C.D.
39.(2022•海南)如图,菱形ABCD中,点E是边CD的中点,EF垂直AB交AB的延长线于点F,若BF:CE=1:2,EF=,则菱形ABCD的边长是( )
A.3B.4C.5D.
40.(2022•梧州)如图,以点O为位似中心,作四边形ABCD的位似图形A′B′C′D′,已知=,若四边形ABCD的面积是2,则四边形A′B′C′D′的面积是( )
A.4B.6C.16D.18
命题点6 网络作图及其相关计算
41.(2022•河池)如图、在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(4,1),B(2,3),C(1,2).
(1)画出与△ABC关于y轴对称的△A1B1C1;
(2)以原点O为位似中心,在第三象限内画一个△A2B2C2,使它与△ABC的相似比为2:1,并写出点B2的坐标.
第二十五讲 图形的对称、平移、旋转与位似
命题点1 轴对称图形与中心对称图形
类型一 轴对称图形与中心对称图形的识别
1.(2022•德州)下列图形是中心对称图形的是( )
A.B.C.D.
【答案】B
【解答】解:选项A、C、D都不能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以不是中心对称图形.
选项B能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以是中心对称图形.
故选:B.
2.(2022•淄博)下列图案中,既是轴对称图形又是中心对称图形的是( )
A.B.
C.D.
【答案】D
【解答】解:A.不是中心对称图形,也不是轴对称图形,故此选项不合题意;
B.不是中心对称图形,是轴对称图形,故此选项不合题意;
C.不是中心对称图形,是轴对称图形,故此选项不合题意;
D.既是轴对称图形,又是中心对称图形,故此选项符合题意;
故选:D.
类型二 与轴对称有关的判断
3.(2022•巴中)七巧板是我国的一种传统智力玩具,下列用七巧板拼成的图形是轴对称图形的是( )
A.B.
C.D.
【答案】D
【解答】解:A、不是轴对称图形,不符合题意,
B、不是轴对称图形,不符合题意,
C、不是轴对称图形,不符合题意,
D、是轴对称图形,符合题意,
故选:D.
4.(2022•日照)山东省第二十五届运动会将于2022年8月25日在日照市开幕,“全民健身与省运同行”成为日照市当前的运动主题.在下列给出的运动图片中,是轴对称图形的是( )
A.B.
C.D.
【答案】D
【解答】解:A,B,C选项中的图形都不能找到这样的一条直线,使图形沿这条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;D选项中的图形能找到这样的一条直线(竖直穿过身体中心的直线),图形沿这条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形;
故选:D.
5.(2022•北京)图中的图形为轴对称图形,该图形的对称轴的条数为( )
A.1B.2C.3D.5
【答案】D
【解答】解:如图所示,该图形有5条对称轴,
故选:D.
6.(2022•常州)在平面直角坐标系xOy中,点A与点A1关于x轴对称,点A与点A2关于y轴对称.已知点A1(1,2),则点A2的坐标是( )
A.(﹣2,1)B.(﹣2,﹣1)C.(﹣1,2)D.(﹣1,﹣2)
【答案】D
【解答】解:∵点A与点A1关于x轴对称,已知点A1(1,2),
∴点A的坐标为(1,﹣2),
∵点A与点A2关于y轴对称,
∴点A2的坐标为(﹣1,﹣2),
故选:D.
7.(2022•邵阳)下列四种图形中,对称轴条数最多的是( )
A.等边三角形B.圆C.长方形D.正方形
【答案】B
【解答】解:A.等边三角形是轴对称图形,它有3条对称轴;
B.圆是轴对称图形,有无数条条对称轴;
C.长方形是轴对称图形,有2条对称轴;
D.正方形是轴对称图形,有4条对称轴;
故对称轴条数最多的图形是圆.
故选:B.
8.(2022•台州)如图是战机在空中展示的轴对称队形.以飞机B,C所在直线为x轴、队形的对称轴为y轴,建立平面直角坐标系.若飞机E的坐标为(40,a),则飞机D的坐标为( )
A.(40,﹣a)B.(﹣40,a)C.(﹣40,﹣a)D.(a,﹣40)
【答案】B
【解答】解:∵飞机E(40,a)与飞机D关于y轴对称,
∴飞机D的坐标为(﹣40,a),
故选:B.
9.(2022•六盘水)如图,将一张长方形纸对折,再对折,然后沿图中虚线剪下,剪下的图形展开后可得到( )
A.三角形B.梯形C.正方形D.五边形
【答案】C
【解答】解:将一张长方形纸对折,再对折,然后沿图中虚线剪下,剪下的图形展开后可得到:正方形.
故选:C.
10.(2022•资阳)如图,正方形ABCD的对角线交于点O,点E是直线BC上一动点.若AB=4,则AE+OE的最小值是( )
A.B.C.D.
【答案】D
【解答】解:如图所示,作点A关于直线BC的对称点A',连接A'O,其与BC的交点即为点E,再作OF⊥AB交AB于点F,
∵A与A'关于BC对称,
∴AE=A'E,AE+OE=A'E+OE,当且仅当A',O,E在同一条线上的时候和最小,如图所示,此时AE+OE=A'E+OE=A'O,
∵正方形ABCD,点O为对角线的交点,
∴,
∵A与A'关于BC对称,
∴AB=BA'=4,
∴FA'=FB+BA'=2+4=6,
在Rt△OFA'中,,
故选:D.
11.(2022•菏泽)如图,在菱形ABCD中,AB=2,∠ABC=60°,M是对角线BD上的一个动点,CF=BF,则MA+MF的最小值为( )
A.1B.C.D.2
【答案】C
【解答】解:当A、M、F三点共线时,即当M点位于M′时,MA+MF的值最小,
由菱形的性质可知,
AB=BC,
又∵∠ABC=60°,
∴△ABC为等边三角形,
∵F点为BC的中点,AB=2,
∴AF⊥BC,CF=FB=1,
∴在Rt△ABF中,AF==.
故选:C.
12.(2022•黔西南州)在如图所示的Rt△ABC纸片中,∠ACB=90°,D是斜边AB的中点,把纸片沿着CD折叠,点B到点E的位置,连接AE.若AE∥DC,∠B=α,则∠EAC等于( )
A.αB.90°﹣αC.αD.90°﹣2α
【答案】B
【解答】解:∵∠ACB=90°,D是斜边AB的中点,
∴CD=BD=AD,
由折叠的性质得:BD=ED,∠B=∠CED,
∴CD=BD=AD=ED,
∴∠B=∠DCB=∠DCE=∠CED=α,
∴∠EDC=180°﹣∠DCE﹣∠CED=180°﹣α﹣α=180°﹣2α,
∵AE∥DC,
∴∠AED=∠EDC=180°﹣2α,
∵ED=AD,
∴∠EAD=∠AED=180°﹣2α,
∵∠B=α,∠ACB=90°,
∴∠CAD=90°﹣α,
∴∠EAC=∠EAD﹣∠CAD=180°﹣2α﹣(90°﹣α)=90°﹣α,
故选:B.
13.(2022•济宁)如图,三角形纸片ABC中,∠BAC=90°,AB=2,AC=3.沿过点A的直线将纸片折叠,使点B落在边BC上的点D处;再折叠纸片,使点C与点D重合,若折痕与AC的交点为E,则AE的长是( )
A.B.C.D.
【答案】A
【解答】解:∵沿过点A的直线将纸片折叠,使点B落在边BC上的点D处,
∴AD=AB=2,∠B=∠ADB,
∵折叠纸片,使点C与点D重合,
∴CE=DE,∠C=∠CDE,
∵∠BAC=90°,
∴∠B+∠C=90°,
∴∠ADB+∠CDE=90°,
∴∠ADE=90°,
∴AD2+DE2=AE2,
设AE=x,则CE=DE=3﹣x,
∴22+(3﹣x)2=x2,
解得x=,
∴AE=,
故选:A.
14.(2022•西藏)如图,在菱形纸片ABCD中,E是BC边上一点,将△ABE沿直线AE翻折,使点B落在B'上,连接DB'.已知∠C=120°,∠BAE=50°,则∠AB'D的度数为( )
A.50°B.60°C.80°D.90°
【答案】C
【解答】解:∵四边形ABCD是菱形,∠C=120°,
∴∠BAD=∠C=120°,AB=AD,
∵将△ABE沿直线AE翻折,使点B落在B'上,
∴∠BAE=∠B'AE=50°,AB'=AB,
∴∠BAB'=100°,AB'=AD,
∴∠DAB'=20°,
∴∠AB'D=∠ADB'=(180°﹣20°)÷2=80°,
故选:C.
15.(2022•牡丹江)下列图形是黄金矩形的折叠过程:
第一步,如图(1),在一张矩形纸片一端折出一个正方形,然后把纸片展平;
第二步,如图(2),把正方形折成两个相等的矩形再把纸片展平;
第三步,折出内侧矩形的对角线AB,并把AB折到图(3)中所示的AD处;
第四步,如图(4),展平纸片,折出矩形BCDE就是黄金矩形.
则下列线段的比中:①,②,③,④,比值为的是( )
A.①②B.①③C.②④D.②③
【答案】B
【解答】解:①设MN=2a,则BC=DE=2a,AC=a,
在Rt△ABC中,AB===a,
如图(3),由折叠得:AD=AB=a,
∴CD=AD﹣AC=AB﹣AC=a﹣a,
∴==;
②==;
③∵四边形MNCB是正方形,
∴CN=MN=2a,
∴ND=a+a,
∴===;
④==;
综上,比值为的是①③;
故选:B.
16.(2022•营口)如图,在矩形ABCD中,点M在AB边上,把△BCM沿直线CM折叠,使点B落在AD边上的点E处,连接EC,过点B作BF⊥EC,垂足为F,若CD=1,CF=2,则线段AE的长为( )
A.﹣2B.﹣1C.D.
【答案】A
【解答】解:∵BC=CE,∠EDC=∠CFB=90°,∠DEC=∠BCF,
∴△EDC≌△CFB(AAS),
∴DE=CF=2,
∴CE====BC=AD,
∴AE=AD﹣DE=﹣2,
故选:A.
17.(2022•毕节市)矩形纸片ABCD中,E为BC的中点,连接AE,将△ABE沿AE折叠得到△AFE,连接CF.若AB=4,BC=6,则CF的长是( )
A.3B.C.D.
【答案】D
【解答】解:连接BF,交AE于O点,
∵将△ABE沿AE折叠得到△AFE,
∴BE=EF,∠AEB=∠AEF,AE垂直平分BF,
∵点E为BC的中点,
∴BE=CE=EF=3,
∴∠EFC=∠ECF,
∵∠BEF=∠ECF+∠EFC,
∴∠AEB=∠ECF,
∴AE∥CF,
∴∠BFC=∠BOE=90°,
在Rt△ABE中,由勾股定理得,AE==,
∴BO==,
∴BF=2BO=,
在Rt△BCF中,由勾股定理得,
CF===,
故选:D.
18.(2022•台湾)如图1为一张正三角形纸片ABC,其中D点在AB上,E点在BC上.今以DE为折线将B点往右折后,BD、BE分别与AC相交于F点、G点,如图2所示.若AD=10,AF=16,DF=14,BF=8,则CG的长度为多少?( )
A.7B.8C.9D.10
【答案】C
【解答】解:∵三角形ABC是正三角形,
∴∠A=∠B=60°,
∵∠AFD=∠BFG,
∴△AFD∽△BFG,
∴=,即=,
∴FG=7,
∵AD=10,DF=14,BF=8,
∴AB=32,
∴AC=32,
∴CG=AC﹣AF﹣FG=32﹣16﹣7=9;
故选:C.
19.(2022•河北)如图,将△ABC折叠,使AC边落在AB边上,展开后得到折痕l,则l是△ABC的( )
A.中线B.中位线C.高线D.角平分线
【答案】D
【解答】解:由已知可得,
∠1=∠2,
则l为△ABC的角平分线,
故选:D.
命题点3 图形的平移及其相关计算
20.(2022•海南)如图,点A(0,3)、B(1,0),将线段AB平移得到线段DC,若∠ABC=90°,BC=2AB,则点D的坐标是( )
A.(7,2)B.(7,5)C.(5,6)D.(6,5)
【答案】D
【解答】解:过点D作DE⊥y轴于点E,如图,
∵点A(0,3)、B(1,0),
∴OA=3,OB=1.
∵线段AB平移得到线段DC,
∴AB∥CD,AB=CD,
∴四边形ABCD是平行四边形,
∵∠ABC=90°,
∴四边形ABCD是矩形.
∴∠BAD=90°,BC=AD.
∵BC=2AB,
∴AD=2AB.
∵∠BAO+∠DAE=90°,∠BAO+∠ABO=90°,
∴∠ABO=∠EAD.
∵∠AOB=∠AED=90°,
∴△ABO∽△DAE.
∴.
∴DE=2OA=6,AE=2OB=2,
∴OE=OA+AE=5,
∴D(6,5).
故选:D.
21.(2022•福建)如图,现有一把直尺和一块三角尺,其中∠ABC=90°,∠CAB=60°,AB=8,点A对应直尺的刻度为12.将该三角尺沿着直尺边缘平移,使得△ABC移动到△A′B′C′,点A′对应直尺的刻度为0,则四边形ACC′A′的面积是( )
A.96B.96C.192D.160
【答案】B
【解答】解:在Rt△ABC中,∠CAB=60°,AB=8,
则BC=AB•tan∠CAB=8,
由平移的性质可知:AC=A′C′,AC∥A′C′,
∴四边形ACC′A′为平行四边形,
∵点A对应直尺的刻度为12,点A′对应直尺的刻度为0,
∴AA′=12,
∴S四边形ACC′A′=12×8=96,
故选:B.
22.(2022•淄博)如图,在平面直角坐标系中,平移△ABC至△A1B1C1的位置.若顶点A(﹣3,4)的对应点是A1(2,5),则点B(﹣4,2)的对应点B1的坐标是 .
【答案】(1,3)
【解答】解:∵点A(﹣3,4)的对应点是A1(2,5),
∴点B(﹣4,2)的对应点B1的坐标是(1,3).
故答案为:(1,3).
23.(2022•台州)如图,△ABC的边BC长为4cm.将△ABC平移2cm得到△A'B'C',且BB'⊥BC,则阴影部分的面积为 cm2.
【答案】8
【解答】解:由平移可知,阴影部分的面积等于四边形BB'C'C的面积=BC×BB'=4×2=8(cm2),
故答案为:8.
24.(2022•毕节市)如图,在平面直角坐标系中,把一个点从原点开始向上平移1个单位,再向右平移1个单位,得到点A1(1,1);把点A1向上平移2个单位,再向左平移2个单位,得到点A2(﹣1,3);把点A2向下平移3个单位,再向左平移3个单位,得到点A3(﹣4,0);把点A3向下平移4个单位,再向右平移4个单位,得到点A4(0,﹣4),…;按此做法进行下去,则点A10的坐标为 .
【答案】(﹣1,11)
【解答】解:由图象可知,A5(5,1),
将点A5向左平移6个单位、再向上平移6个单位,可得A6(﹣1,7),
将点A6向左平移7个单位,再向下平移7个单位,可得A7(﹣8,0),
将点A7向右平移8个单位,再向下平移8个单位,可得A8(0,﹣8),
将点A8向右平移9个单位,再向上平移9个单位,可得A9(9,1),
将点A9向左平移10个单位,再向上平移10个单位,可得A10(﹣1,11),
故答案为:(﹣1,11).
命题点4 图形的旋转及其相关计算
25.(2022•上海)有一个正n边形旋转90°后与自身重合,则n为( )
A.6B.9C.12D.15
【答案】C
【解答】解:A.正六边形旋转90°后不能与自身重合,不合题意;
B.正九边形旋转90°后不能与自身重合,不合题意;
C.正十二边形旋转90°后能与自身重合,符合题意;
D.正十五边形旋转90°后不能与自身重合,不合题意;
故选:C.
26.(2022•河池)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,将Rt△ABC绕点B顺时针旋转90°得到Rt△A'B'C'.在此旋转过程中Rt△ABC所扫过的面积为( )
A.25π+24B.5π+24C.25πD.5π
【答案】A
【解答】解:∵∠ACB=90°,AC=6,BC=8,
∴AB=10,
∴Rt△ABC所扫过的面积=+×6×8=25π+24,
故选:A.
27.(2022•长沙)在平面直角坐标系中,点(5,1)关于原点对称的点的坐标是( )
A.(﹣5,1)B.(5,﹣1)C.(1,5)D.(﹣5,﹣1)
【答案】D
【解答】解:根据中心对称的性质,可知:点(5,1)关于原点O中心对称的点的坐标为(﹣5,﹣1).
故选:D.
28.(2022•天津)如图,在△ABC中,AB=AC,若M是BC边上任意一点,将△ABM绕点A逆时针旋转得到△ACN,点M的对应点为点N,连接MN,则下列结论一定正确的是( )
A.AB=ANB.AB∥NCC.∠AMN=∠ACND.MN⊥AC
【答案】C
【解答】解:A、∵AB=AC,
∴AB>AM,
由旋转的性质可知,AN=AM,
∴AB>AN,故本选项结论错误,不符合题意;
B、当△ABC为等边三角形时,AB∥NC,除此之外,AB与NC不平行,故本选项结论错误,不符合题意;
C、由旋转的性质可知,∠BAC=∠MAN,∠ABC=∠ACN,
∵AM=AN,AB=AC,
∴∠ABC=∠AMN,
∴∠AMN=∠ACN,本选项结论正确,符合题意;
D、只有当点M为BC的中点时,∠BAM=∠CAM=∠CAN,才有MN⊥AC,故本选项结论错误,不符合题意;
故选:C.
29.(2022•内蒙古)如图,边长为1的正方形ABCD绕点A逆时针旋转30°到正方形AB′C′D′,图中阴影部分的面积为( )
A.B.C.1﹣D.1﹣
【答案】C
【解答】解:如图,设B′C′与CD的交点为E,连接AE,
在Rt△AB′E和Rt△ADE中,,
∴Rt△AB′E≌Rt△ADE(HL),
∴∠DAE=∠B′AE,
∵旋转角为30°,
∴∠DAB′=60°,
∴∠DAE=×60°=30°,
∴DE=1×=,
∴阴影部分的面积=1×1﹣2×(×1×)=1﹣.
故选:C.
30.(2022•益阳)如图,已知△ABC中,∠CAB=20°,∠ABC=30°,将△ABC绕A点逆时针旋转50°得到△AB′C′,以下结论:①BC=B′C′,②AC∥C′B′,③C′B′⊥BB′,④∠ABB′=∠ACC′,正确的有( )
A.①②③B.①②④C.①③④D.②③④
【答案】B
【解答】解:①∵△ABC绕A点逆时针旋转50°得到△AB′C′,
∴BC=B′C′.故①正确;
②∵△ABC绕A点逆时针旋转50°,
∴∠BAB′=50°.
∵∠CAB=20°,
∴∠B′AC=∠BAB′﹣∠CAB=30°.
∵∠AB′C′=∠ABC=30°,
∴∠AB′C′=∠B′AC.
∴AC∥C′B′.故②正确;
③在△BAB′中,
AB=AB′,∠BAB′=50°,
∴∠AB′B=∠ABB′=(180°﹣50°)=65°.
∴∠BB′C′=∠AB′B+∠AB′C′=65°+30°=95°.
∴C′B′与BB′不垂直.故③不正确;
④在△ACC′中,
AC=AC′,∠CAC′=50°,
∴∠ACC′=(180°﹣50°)=65°.
∴∠ABB′=∠ACC′.故④正确.
∴①②④这三个结论正确.
故选:B.
31.(2022•西宁)如图,在△ABC中,∠C=90°,∠B=30°,AB=6,将△ABC绕点A逆时针方向旋转15°得到△AB′C′,B′C′交AB于点E,则B′E= .
【答案】3﹣3
【解答】解:在△ABC中,∵∠C=90°,∠B=30°,AB=6,
∴AC=3,BC=3,∠CAB=60°,
∵将△ABC绕点A逆时针方向旋转15°得到△AB′C′,
∴△ABC≌△AB′C′,∠C'AE=45°,
∴AC=AC'=C'E=3,BC=B'C'=3,
∴B'E=B'C'﹣C'E=3﹣3.
32.(2022•黄石)如图,等边△ABC中,AB=10,点E为高AD上的一动点,以BE为边作等边△BEF,连接DF,CF,则∠BCF= ,FB+FD的最小值为 .
【答案】30°,5
【解答】解:如图,
∵△ABC是等边三角形,AD⊥CB,
∴∠BAE=∠BAC=30°,
∵△BEF是等边三角形,
∴∠EBF=∠ABC=60°,BE=BF,
∴∠ABE=∠CBF,
在△BAE和△BCF中,
,
∴△BAE≌△BCF(SAS),
∴∠BAE=∠BCF=30°,
作点D关于CF的对称点G,连接CG,DG,BG,BG交CF的延长线于点F′,连接DF′,此时BF′+DF′的值最小,最小值=线段BG的长.
∵∠DCF=∠FCG=30°,
∴∠DCG=60°,
∵CD=CG=5,
∴△CDG是等边三角形,
∴DB=DC=DG,
∴∠CGB=90°,
∴BG===5,
∴BF+DF的最小值为5,
故答案为:30°,5.
命题点5 图形的位似及其相关计算
33.(2022•徐州)如图,若方格纸中每个小正方形的边长均为1,则阴影部分的面积为( )
A.5B.6C.D.
【答案】C
【解答】解:∵CD∥AB,
∴△ABE∽△CDE,
∴,
∴,
故选:C.
34.(2022•宁夏)如图,将三角尺直立举起靠近墙面,打开手机手电筒照射三角尺,在墙面上形成影子.则三角尺与影子之间属于以下哪种图形变换( )
A.平移B.轴对称C.旋转D.位似
【答案】D
【解答】解:根据位似的定义可知:三角尺与影子之间属于位似.
故选:D.
35.(2022•衢州)西周数学家商高总结了用“矩”(如图1)测量物高的方法:把矩的两边放置成如图2的位置,从矩的一端A(人眼)望点E,使视线通过点C,记人站立的位置为点B,量出BG长,即可算得物高EG.令BG=x(m),EG=y(m),若a=30cm,b=60cm,AB=1.6m,则y关于x的函数表达式为( )
A.y=xB.y=x+1.6
C.y=2x+1.6D.y=+1.6
【答案】B
【解答】解:由图2可得,
AF=BG=xm,EF=EG﹣FG,FG=AB=1.6m,EG=ym,
∴EF=(y﹣1.6)m,
∵CD⊥AF,EF⊥AF,
∴CD∥EF,
∴△ADC∽△AFE,
∴,
即,
∴,
化简,得y=x+1.6,
故选:B.
36.(2022•巴中)如图,在平面直角坐标系中,C为△AOB的OA边上一点,AC:OC=1:2,过C作CD∥OB交AB于点D,C、D两点纵坐标分别为1、3,则B点的纵坐标为( )
A.4B.5C.6D.7
【答案】C
【解答】解:∵CD∥OB,
∴,
∵AC:OC=1:2,
∴,
∵C、D两点纵坐标分别为1、3,
∴CD=3﹣1=2,
∴,
解得:OB=6,
∴B点的纵坐标为6,
故选:C.
37.(2022•贵阳)如图,在△ABC中,D是AB边上的点,∠B=∠ACD,AC:AB=1:2,则△ADC与△ACB的周长比是( )
A.1:B.1:2C.1:3D.1:4
【答案】B
【解答】解:∵∠B=∠ACD,∠CAD=∠BAC,
∴△ACD∽△ABC,
∴==,
故选:B.
38.(2022•临沂)如图,在△ABC中,DE∥BC,=,若AC=6,则EC=( )
A.B.C.D.
【答案】C
【解答】解:∵DE∥BC,
∴=,
∴,
∴,
∴EC=.
故选:C.
39.(2022•海南)如图,菱形ABCD中,点E是边CD的中点,EF垂直AB交AB的延长线于点F,若BF:CE=1:2,EF=,则菱形ABCD的边长是( )
A.3B.4C.5D.
【答案】B
【解答】解:过点D作DH⊥AB于点H,如图,
∵四边形ABCD是菱形,
∴AD=AB=CD,AB∥CD.
∵EF⊥AB,DH⊥AB,
∴DH∥EF,
∴四边形DHFE为平行四边形,
∴HF=DE,DH=EF=.
∵点E是边CD的中点,
∴DE=CD,
∴HF=CD=AB.
∵BF:CE=1:2,
∴设BF=x,则CE=2x,
∴CD=4x,DE=HF=2x,
AD=AB=4x,
∴AF=AB+BF=5x.
∴AH=AF﹣HF=3x.
在Rt△ADH中,
∵DH2+AH2=AD2,
∴.
解得:x=±1(负数不合题意,舍去),
∴x=1.
∴AB=4x=4.
即菱形ABCD的边长是4,
故选:B.
40.(2022•梧州)如图,以点O为位似中心,作四边形ABCD的位似图形A′B′C′D′,已知=,若四边形ABCD的面积是2,则四边形A′B′C′D′的面积是( )
A.4B.6C.16D.18
【答案】D
【解答】解:∵以点O为位似中心,作四边形ABCD的位似图形A′B′C′D′,=,
∴==,
则四边形A′B′C′D′面积为:18.
故选:D
命题点6 网络作图及其相关计算
41.(2022•河池)如图、在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(4,1),B(2,3),C(1,2).
(1)画出与△ABC关于y轴对称的△A1B1C1;
(2)以原点O为位似中心,在第三象限内画一个△A2B2C2,使它与△ABC的相似比为2:1,并写出点B2的坐标.
【解答】解:(1)如图,△A1B1C1为所作;
(2)如图,△A2B2C2为所作,点B2的坐标为(﹣4,﹣6);
相关试卷
这是一份2023全国真题分类卷 第一部分 基础知识分点练 第二十四讲图形的对称、平移、旋转与位似,共12页。试卷主要包含了 题目等内容,欢迎下载使用。
这是一份第二十讲 圆的基本性质-备战中考数学第一轮专题复习真题分点透练(全国通用),文件包含第二十讲圆的基本性质解析版docx、第二十讲圆的基本性质原卷版docx等2份试卷配套教学资源,其中试卷共27页, 欢迎下载使用。
这是一份第十六讲 图形的相似-备战中考数学第一轮专题复习真题分点透练(全国通用),文件包含第十六讲图形的相似解析版docx、第十六讲图形的相似原卷版docx等2份试卷配套教学资源,其中试卷共47页, 欢迎下载使用。