中考数学压轴真题汇编(全国通用)专题02锐角三角函数压轴真题训练(原卷版+解析)
展开1.(2022•重庆)如图,三角形花园ABC紧邻湖泊,四边形ABDE是沿湖泊修建的人行步道.经测量,点C在点A的正东方向,AC=200米.点E在点A的正北方向.点B,D在点C的正北方向,BD=100米.点B在点A的北偏东30°,点D在点E的北偏东45°.
(1)求步道DE的长度(精确到个位);
(2)点D处有直饮水,小红从A出发沿人行步道去取水,可以经过点B到达点D,也可以经过点E到达点D.请计算说明他走哪一条路较近?
(参考数据:≈1.414,≈1.732)
2.(2022•资阳)小明学了《解直角三角形》内容后,对一条东西走向的隧道AB进行实地测量.如图所示,他在地面上点C处测得隧道一端点A在他的北偏东15°方向上,他沿西北方向前进100米后到达点D,此时测得点A在他的东北方向上,端点B在他的北偏西60°方向上,(点A、B、C、D在同一平面内)
(1)求点D与点A的距离;
(2)求隧道AB的长度.(结果保留根号)
3.(2022•锦州)如图,一艘货轮在海面上航行,准备要停靠到码头C,货轮航行到A处时,测得码头C在北偏东60°方向上.为了躲避A,C之间的暗礁,这艘货轮调整航向,沿着北偏东30°方向继续航行,当它航行到B处后,又沿着南偏东70°方向航行20海里到达码头C.求货轮从A到B航行的距离(结果精确到0.1海里.参考数据:sin50°≈0.766,cs50°≈0.643,tan50°≈1.192).
二.解直角三角形的应用-仰角俯角问题
4.(2022•遂宁)数学兴趣小组到一公园测量塔楼高度.如图所示,塔楼剖面和台阶的剖面在同一平面,在台阶底部点A处测得塔楼顶端点E的仰角∠GAE=50.2°,台阶AB长26米,台阶坡面AB的坡度i=5:12,然后在点B处测得塔楼顶端点E的仰角∠EBF=63.4°,则塔顶到地面的高度EF约为多少米.
(参考数据:tan50.2°≈1.20,tan63.4°≈2.00,sin50.2°≈0.77,sin63.4°≈0.89)
5.(2022•内蒙古)在一次综合实践活动中,某小组对一建筑物进行测量.如图,在山坡坡脚C处测得该建筑物顶端B的仰角为60°,沿山坡向上走20m到达D处,测得建筑物顶端B的仰角为30°.已知山坡坡度i=3:4,即tanθ=,请你帮助该小组计算建筑物的高度AB.
(结果精确到0.1m,参考数据:≈1.732)
6.(2022•阜新)如图,小文在数学综合实践活动中,利用所学的数学知识测量居民楼的高度AB,在居民楼前方有一斜坡,坡长CD=15m,斜坡的倾斜角为α,csα=.小文在C点处测得楼顶端A的仰角为60°,在D点处测得楼顶端A的仰角为30°(点A,B,C,D在同一平面内).
(1)求C,D两点的高度差;
(2)求居民楼的高度AB.
(结果精确到1m,参考数据:≈1.7)
7.(2022•襄阳)位于岘山的革命烈士纪念塔是襄阳市的标志性建筑,是为纪念“襄樊战役”中牺牲的革命烈士及第一、第二次国内革命战争时期为襄阳的解放事业献身的革命烈士而兴建的,某校数学兴趣小组利用无人机测量烈士塔的高度.无人机在点A处测得烈士塔顶部点B的仰角为45°,烈士塔底部点C的俯角为61°,无人机与烈士塔的水平距离AD为10m,求烈士塔的高度.(结果保留整数.参考数据:sin61°≈0.87,cs61°≈0.48,tan61°≈1.80)
8.(2022•鞍山)北京时间2022年4月16日9时56分,神舟十三号载人飞船返回舱成功着陆.为弘扬航天精神,某校在教学楼上悬挂了一幅长为8m的励志条幅(即GF=8m).小亮同学想知道条幅的底端F到地面的距离,他的测量过程如下:如图,首先他站在楼前点B处,在点B正上方点A处测得条幅顶端G的仰角为37°,然后向教学楼条幅方向前行12m到达点D处(楼底部点E与点B,D在一条直线上),在点D正上方点C处测得条幅底端F的仰角为45°,若AB,CD均为1.65m(即四边形ABDC为矩形),请你帮助小亮计算条幅底端F到地面的距离FE的长度.(结果精确到0.1m.参考数据:sin37°≈0.60,cs37°≈0.80,tan37°≈0.75)
三.解直角三角形的应用-坡度坡角问题
9.(2022•郴州)如图是某水库大坝的横截面,坝高CD=20m,背水坡BC的坡度为i1=1:1.为了对水库大坝进行升级加固,降低背水坡的倾斜程度,设计人员准备把背水坡的坡度改为i2=1:,求背水坡新起点A与原起点B之间的距离.
(参考数据:≈1.41,≈1.73.结果精确到0.1m)
10.(2022•徐州)如图,公园内有一个垂直于地面的立柱AB,其旁边有一个坡面CQ,坡角∠QCN=30°.在阳光下,小明观察到AB在地面上的影长为120cm,在坡面上的影长为180cm.同一时刻,小明测得直立于地面长60cm的木杆的影长为90cm(其影子完全落在地面上).求立柱AB的高度.
四.解直角三角形的应用(共2小题)
11.(2022•东营)胜利黄河大桥犹如一架巨大的竖琴,凌驾于滔滔黄河之上,使黄河南北“天堑变通途”.已知主塔AB垂直于桥面BC于点B,其中两条斜拉索AD、AC与桥面BC的夹角分别为60°和45°,两固定点D、C之间的距离约为33m,求主塔AB的高度(结果保留整数,参考数据:≈1.41,≈1.73)
12.(2022•六盘水)“五一”节期间,许多露营爱好者在我市郊区露营,为遮阳和防雨会搭建一种“天幕”,其截面示意图是轴对称图形,对称轴是垂直于地面的支杆AB,用绳子拉直AD后系在树干EF上的点E处,使得A,D,E在一条直线上,通过调节点E的高度可控制“天幕”的开合,AC=AD=2m,BF=3m.
(1)天晴时打开“天幕”,若∠α=65°,求遮阳宽度CD(结果精确到0.1m);
(2)下雨时收拢“天幕”,∠α从65°减少到45°,求点E下降的高度(结果精确到0.1m).
(参考数据:sin65°≈0.90,cs65°≈0.42,tan65°≈2.14,≈1.41)
挑战2023年中考数学解答题压轴真题汇编
专题02 锐角三角函数压轴真题训练
一.解直角三角形的应用-方向角问题
1.(2022•重庆)如图,三角形花园ABC紧邻湖泊,四边形ABDE是沿湖泊修建的人行步道.经测量,点C在点A的正东方向,AC=200米.点E在点A的正北方向.点B,D在点C的正北方向,BD=100米.点B在点A的北偏东30°,点D在点E的北偏东45°.
(1)求步道DE的长度(精确到个位);
(2)点D处有直饮水,小红从A出发沿人行步道去取水,可以经过点B到达点D,也可以经过点E到达点D.请计算说明他走哪一条路较近?
(参考数据:≈1.414,≈1.732)
【解答】解:(1)过D作DF⊥AE于F,如图:
由已知可得四边形ACDF是矩形,
∴DF=AC=200米,
∵点D在点E的北偏东45°,即∠DEF=45°,
∴△DEF是等腰直角三角形,
∴DE=DF=200≈283(米);
(2)由(1)知△DEF是等腰直角三角形,DE=283米,
∴EF=DF=200米,
∵点B在点A的北偏东30°,即∠EAB=30°,
∴∠ABC=30°,
∵AC=200米,
∴AB=2AC=400米,BC==200米,
∵BD=100米,
∴经过点B到达点D路程为AB+BD=400+100=500米,
CD=BC+BD=(200+100)米,
∴AF=CD=(200+100)米,
∴AE=AF﹣EF=(200+100)﹣200=(200﹣100)米,
∴经过点E到达点D路程为AE+DE=200﹣100+200≈529米,
∵529>500,
∴经过点B到达点D较近.
2.(2022•资阳)小明学了《解直角三角形》内容后,对一条东西走向的隧道AB进行实地测量.如图所示,他在地面上点C处测得隧道一端点A在他的北偏东15°方向上,他沿西北方向前进100米后到达点D,此时测得点A在他的东北方向上,端点B在他的北偏西60°方向上,(点A、B、C、D在同一平面内)
(1)求点D与点A的距离;
(2)求隧道AB的长度.(结果保留根号)
【解答】解;(1)由题意可知:∠ACD=15°+45°=60°,∠ADC=180°﹣45°﹣45°=90°,
在Rt△ADC中,
∴(米),
答:点D与点A的距离为300米.
(2)过点D作DE⊥AB于点E,
∵AB是东西走向,
∴∠ADE=45°,∠BDE=60°,
在Rt△ADE中,
∴(米),
在Rt△BDE中,
∴(米),
∴(米),
答:隧道AB的长为米.
3.(2022•锦州)如图,一艘货轮在海面上航行,准备要停靠到码头C,货轮航行到A处时,测得码头C在北偏东60°方向上.为了躲避A,C之间的暗礁,这艘货轮调整航向,沿着北偏东30°方向继续航行,当它航行到B处后,又沿着南偏东70°方向航行20海里到达码头C.求货轮从A到B航行的距离(结果精确到0.1海里.参考数据:sin50°≈0.766,cs50°≈0.643,tan50°≈1.192).
【解答】解:过B作BD⊥AC于D,
由题意可知∠ABE=30°,∠BAC=30°,则∠C=180°﹣30°﹣30°﹣70°=50°,
在Rt△BCD中,∠C=50°,BC=20(海里),
∴BD=BCsin50°≈20×0.766=15.32(海里),
在Rt△ABD中,∠BAD=30°,BD=15.32(海里),
∴AB=2BD=30.64≈30.6(海里),
答:货轮从A到B航行的距离约为30.6海里.
二.解直角三角形的应用-仰角俯角问题
4.(2022•遂宁)数学兴趣小组到一公园测量塔楼高度.如图所示,塔楼剖面和台阶的剖面在同一平面,在台阶底部点A处测得塔楼顶端点E的仰角∠GAE=50.2°,台阶AB长26米,台阶坡面AB的坡度i=5:12,然后在点B处测得塔楼顶端点E的仰角∠EBF=63.4°,则塔顶到地面的高度EF约为多少米.
(参考数据:tan50.2°≈1.20,tan63.4°≈2.00,sin50.2°≈0.77,sin63.4°≈0.89)
【解答】解:如图,延长EF交AG于点H,则EH⊥AG,作BP⊥AG于点P,则四边形BFHP是矩形,
∴FB=PH,FH=PB,
由i=5:12,可以假设BP=5x,AP=12x,
∵PB2+PA2=AB2,
∴(5x)2+(12x)2=262,
∴x=2或﹣2(舍去),
∴PB=FH=10,AP=24,
设EF=a米,BF=b米,
∵tan∠EBF=,
∴≈2,
∴a≈2b①,
∵tan∠EAH===,
∴≈1.2②,
由①②得a≈47,b≈23.5,
答:塔顶到地面的高度EF约为47米.
5.(2022•内蒙古)在一次综合实践活动中,某小组对一建筑物进行测量.如图,在山坡坡脚C处测得该建筑物顶端B的仰角为60°,沿山坡向上走20m到达D处,测得建筑物顶端B的仰角为30°.已知山坡坡度i=3:4,即tanθ=,请你帮助该小组计算建筑物的高度AB.
(结果精确到0.1m,参考数据:≈1.732)
【解答】解:过点D作DE⊥AC,垂足为E,过点D作DF⊥AB,垂足为F,
则DE=AF,DF=AE,
在Rt△DEC中,tanθ==,
设DE=3x米,则CE=4x米,
∵DE2+CE2=DC2,
∴(3x)2+(4x)2=400,
∴x=4或x=﹣4(舍去),
∴DE=AF=12米,CE=16米,
设BF=y米,
∴AB=BF+AF=(12+y)米,
在Rt△DBF中,∠BDF=30°,
∴DF===y(米),
∴AE=DF=y米,
∴AC=AE﹣CE=(y﹣16)米,
在Rt△ABC中,∠ACB=60°,
∴tan60°===,
解得:y=6+8,
经检验:y=6+8是原方程的根,
∴AB=BF+AF=18+8≈31.9(米),
∴建筑物的高度AB约为31.9米.
6.(2022•阜新)如图,小文在数学综合实践活动中,利用所学的数学知识测量居民楼的高度AB,在居民楼前方有一斜坡,坡长CD=15m,斜坡的倾斜角为α,csα=.小文在C点处测得楼顶端A的仰角为60°,在D点处测得楼顶端A的仰角为30°(点A,B,C,D在同一平面内).
(1)求C,D两点的高度差;
(2)求居民楼的高度AB.
(结果精确到1m,参考数据:≈1.7)
【解答】解:(1)过点D作DE⊥BC,交BC的延长线于点E,
∵在Rt△DCE中,csα=,CD=15m,
∴(m).
∴(m).
答:C,D两点的高度差为9m.
(2)过点D作DF⊥AB于F,
由题意可得BF=DE,DF=BE,
设AF=xm,
在Rt△ADF中,tan∠ADF=tan30°=,
解得DF=x,
在Rt△ABC中,AB=AF+FB=AF+DE=(x+9)m,BC=BE﹣CE=DF﹣CE=(x﹣12)m,
tan60°==,
解得,
经检验,是原方程的解且符合题意,
∴AB=++9≈24(m).
答:居民楼的高度AB约为24m.
7.(2022•襄阳)位于岘山的革命烈士纪念塔是襄阳市的标志性建筑,是为纪念“襄樊战役”中牺牲的革命烈士及第一、第二次国内革命战争时期为襄阳的解放事业献身的革命烈士而兴建的,某校数学兴趣小组利用无人机测量烈士塔的高度.无人机在点A处测得烈士塔顶部点B的仰角为45°,烈士塔底部点C的俯角为61°,无人机与烈士塔的水平距离AD为10m,求烈士塔的高度.(结果保留整数.参考数据:sin61°≈0.87,cs61°≈0.48,tan61°≈1.80)
【解答】解:由题意得,∠BAD=45°,∠DAC=61°,
在Rt△ABD中,∠BAD=45°,AD=10m,
∴BD=AD=10m,
在Rt△ACD中,∠DAC=61°,
tan61°=≈1.80,
解得CD≈18,
∴BC=BD+CD=10+18=28(m).
∴烈士塔的高度约为28m.
8.(2022•鞍山)北京时间2022年4月16日9时56分,神舟十三号载人飞船返回舱成功着陆.为弘扬航天精神,某校在教学楼上悬挂了一幅长为8m的励志条幅(即GF=8m).小亮同学想知道条幅的底端F到地面的距离,他的测量过程如下:如图,首先他站在楼前点B处,在点B正上方点A处测得条幅顶端G的仰角为37°,然后向教学楼条幅方向前行12m到达点D处(楼底部点E与点B,D在一条直线上),在点D正上方点C处测得条幅底端F的仰角为45°,若AB,CD均为1.65m(即四边形ABDC为矩形),请你帮助小亮计算条幅底端F到地面的距离FE的长度.(结果精确到0.1m.参考数据:sin37°≈0.60,cs37°≈0.80,tan37°≈0.75)
【解答】解:设AC与GE相交于点H,
由题意得:
AB=CD=HE=1.65米,AC=BD=12米,∠AHG=90°,
设CH=x米,
∴AH=AC+CH=(12+x)米,
在Rt△CHF中,∠FCH=45°,
∴FH=CH•tan45°=x(米),
∵GF=8米,
∴GH=GF+FH=(8+x)米,
在Rt△AHG中,∠GAH=37°,
∴tan37°==≈0.75,
解得:x=4,
经检验:x=4是原方程的根,
∴FE=FH+HE=5.65≈5.7(米),
∴条幅底端F到地面的距离FE的长度约为5.7米.
三.解直角三角形的应用-坡度坡角问题
9.(2022•郴州)如图是某水库大坝的横截面,坝高CD=20m,背水坡BC的坡度为i1=1:1.为了对水库大坝进行升级加固,降低背水坡的倾斜程度,设计人员准备把背水坡的坡度改为i2=1:,求背水坡新起点A与原起点B之间的距离.
(参考数据:≈1.41,≈1.73.结果精确到0.1m)
【解答】解:在Rt△BCD中,
∵BC的坡度为i1=1:1,
∴=1,
∴CD=BD=20米,
在Rt△ACD中,
∵AC的坡度为i2=1:,
∴=,
∴AD=CD=20(米),
∴AB=AD﹣BD=20﹣20≈14.6(米),
∴背水坡新起点A与原起点B之间的距离约为14.6米.
10.(2022•徐州)如图,公园内有一个垂直于地面的立柱AB,其旁边有一个坡面CQ,坡角∠QCN=30°.在阳光下,小明观察到AB在地面上的影长为120cm,在坡面上的影长为180cm.同一时刻,小明测得直立于地面长60cm的木杆的影长为90cm(其影子完全落在地面上).求立柱AB的高度.
【解答】解:延长AD交BN于点E,过点D作DF⊥BN于点F,
在Rt△CDF中,∠CFD=90°,∠DCF=30°,
则DF=CD=90(cm),CF=CD•cs∠DCF=180×=90(cm),
由题意得:=,即=,
解得:EF=135,
∴BE=BC+CF+EF=(255+90)cm,
则=,
解得:AB=170+60,
答:立柱AB的高度为(170+60)cm.
四.解直角三角形的应用(共2小题)
11.(2022•东营)胜利黄河大桥犹如一架巨大的竖琴,凌驾于滔滔黄河之上,使黄河南北“天堑变通途”.已知主塔AB垂直于桥面BC于点B,其中两条斜拉索AD、AC与桥面BC的夹角分别为60°和45°,两固定点D、C之间的距离约为33m,求主塔AB的高度(结果保留整数,参考数据:≈1.41,≈1.73)
【解答】解:在Rt△ADB中,∠ADB=60°,tan∠ADB=,
∴BD==,
在Rt△ABC中,∠C=45°,tan∠C=,
∴BC==AB,
∵BC﹣BD=CD=33m,
∴AB﹣=33,
∴AB=≈78(m).
答:主塔AB的高约为78m.
12.(2022•六盘水)“五一”节期间,许多露营爱好者在我市郊区露营,为遮阳和防雨会搭建一种“天幕”,其截面示意图是轴对称图形,对称轴是垂直于地面的支杆AB,用绳子拉直AD后系在树干EF上的点E处,使得A,D,E在一条直线上,通过调节点E的高度可控制“天幕”的开合,AC=AD=2m,BF=3m.
(1)天晴时打开“天幕”,若∠α=65°,求遮阳宽度CD(结果精确到0.1m);
(2)下雨时收拢“天幕”,∠α从65°减少到45°,求点E下降的高度(结果精确到0.1m).
(参考数据:sin65°≈0.90,cs65°≈0.42,tan65°≈2.14,≈1.41)
【解答】解:(1)由对称知,CD=2OD,AD=AC=2m,∠AOD=90°,
在Rt△AOD中,∠OAD=α=65°,
∴sinα=,
∴OD=AD•sinα=2×sin65°≈2×0.90=1.80m,
∴CD=2OD=3.6m,
答:遮阳宽度CD约为3.6米;
(2)如图,
过点E作EH⊥AB于H,
∴∠BHE=90°,
∵AB⊥BF,EF⊥BF,
∴∠ABF=∠EFB=90°,
∴∠ABF=∠EFB=∠BHE=90°,
∴EH=BF=3m,
在Rt△AHE中,tana=,
∴AH=,
当∠α=65°时,AH=≈≈1.40m,
当∠α=45°时,AH==3,
∴当∠α从65°减少到45°时,点E下降的高度约为3﹣1.40=1.6m.
最新中考数学压轴真题汇编 专题03 函数图像的压轴真题训练 (全国通用): 这是一份最新中考数学压轴真题汇编 专题03 函数图像的压轴真题训练 (全国通用),文件包含专题03函数图像的压轴真题训练原卷版docx、专题03函数图像的压轴真题训练解析版docx等2份试卷配套教学资源,其中试卷共43页, 欢迎下载使用。
最新中考数学压轴真题汇编 专题02 锐角三角函数压轴真题训练 (全国通用): 这是一份最新中考数学压轴真题汇编 专题02 锐角三角函数压轴真题训练 (全国通用),文件包含专题02锐角三角函数压轴真题训练原卷版docx、专题02锐角三角函数压轴真题训练解析版docx等2份试卷配套教学资源,其中试卷共25页, 欢迎下载使用。
最新中考数学压轴真题汇编 专题02 数与式和方程的压轴真题训练 (全国通用): 这是一份最新中考数学压轴真题汇编 专题02 数与式和方程的压轴真题训练 (全国通用),文件包含专题02数与式和方程的压轴真题训练原卷版docx、专题02数与式和方程的压轴真题训练解析版docx等2份试卷配套教学资源,其中试卷共15页, 欢迎下载使用。