高一数学同步备好课之题型全归纳(人教A版必修第一册)专题38不同函数增长的差异(原卷版+解析)
展开2.几种函数模型的增长差异
(1)当a>1时,指数函数y=ax是增函数,并且当a越大时,其函数值的增长就越快.
(2)当a>1时,对数函数y=lgax是增函数,并且当a越小时,其函数值的增长就越快.
(3)当x>0,n>1时,幂函数y=xn显然也是增函数,并且当x>1时,n越大,其函数值的增长就越快.
(4)一般地,虽然指数函数y=ax(a>1)与一次函数y=kx(k>0)在区间[0,+∞)上都单调递增,但它们的增长速度不同,随着x的增大,指数函数y=ax(a>1)的增长速度越来越快,即使k的值远远大于a的值, y=ax(a>1)的增长速度最终都会超过并远远大于y=kx的增长速度.尽管在x的一定变化范围内, ax会小于kx,但由于指数函数y=ax(a>1)的增长最终会快于一次函数y=kx(k>0)的增长,因此,总会存在一个x0,当x>x0时,恒有ax>kx.
(5)一般地,虽然对数函数y=lgax(a>1)与一次函数y=kx(k>0)在区间(0,+∞)上都单调递增,但它们的增长速度不同.随着x的增大,一次函数y=kx(k>0)保持固定的增长速度,而对数函数y=lgax(a>1)的增长速度越来越慢.不论a的值比k的值大多少,在一定范围内, lgax可能会大于kx,但由于lgax的增长慢于kx的增长,因此总会存在一个x0,当x>x0时,恒有lgax
一般地,在区间(0,+∞)上,尽管函数y=ax(a>1),y=lgax(a>1)和y=xn(n>0)都是增函数,但它们的增长速度不同,而且不在同一个“档次”上.随着x的增大,y=ax(a>1)的增长速度越来越快,会超过并远远大于y=xn(n>0)的增长速度,而y=lgax(a>1)的增长速度则会越来越慢,总会存在一个x0,当x>x0时,就有lgax<xn<ax.
题型一 几类函数模型增长差异的比较
1.下列函数中,增长速度最快的是( )
A.y=2 019x B.y=2019
C.y=lg2 019x D.y=2 019x
2.下列函数中,随x的增大,增长速度最快的是( )
A.y=1 B.y=x
C.y=3x D.y=lg3x
3.当a>1时,有下列结论:
①指数函数y=ax,当a越大时,其函数值的增长越快;
②指数函数y=ax,当a越小时,其函数值的增长越快;
③对数函数y=lgax,当a越大时,其函数值的增长越快;
④对数函数y=lgax,当a越小时,其函数值的增长越快.
其中正确的结论是( )
A.①③ B.①④ C.②③ D.②④
4.下面对函数f(x)=lgeq \f(1,2)x,g(x)=eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))x与h(x)=-2x在区间(0,+∞)上的递减情况说法正确的是( )
A.f(x)递减速度越来越慢,g(x)递减速度越来越快,h(x)递减速度越来越慢
B.f(x)递减速度越来越快,g(x)递减速度越来越慢,h(x)递减速度越来越快
C.f(x)递减速度越来越慢,g(x)递减速度越来越慢,h(x)递减速度不变
D.f(x)递减速度越来越快,g(x)递减速度越来越快,h(x)递减速度越来越快
5.函数y=x2与函数y=xln x在区间(0,+∞)上增长较快的一个是________ .
6.四个变量y1,y2,y3,y4随变量x变化的数据如表:
关于x呈指数函数变化的变量是________.
7.以固定的速度向如图所示的瓶子中注水,则水面的高度h和时间t之间的关系是( )
8.小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间后,为了赶时间加快速度行驶.与以上事件吻合得最好的图象是( )
9.生活经验告诉我们,当水注入容器(设单位时间内进水量相同)时,水的高度随着时间的变化而变化,在图中请选择与容器相匹配的图象,A对应________;B对应________;C对应________;D对应________.
题型二 指数函数、对数函数、幂函数、一次函数模型的比较
1.y1=2x,y2=x2,y3=lg2x,当2
C.y1>y3>y2 D.y2>y3>y1
2.下列各项是四种生意预期的收益y关于时间x的函数,从足够长远的角度看,更为有前途的生意是___.
①y=10×1.05x;②y=20+x1.5;③y=30+lg(x-1);④y=50.
3.当2
C.2x>lg2x>x2D.x2>lg2x>2x
4.某地区植被被破坏,土地沙漠化越来越严重,最近三年测得沙漠增加值分别为0.2万公顷、0.4万公顷和0.76万公顷,则沙漠增加数y公顷关于年数x的函数关系较为近似的是( )
A.y=0.2x B.y=eq \f(1,10)(x2+2x)
C.y=eq \f(2x,10) D.y=0.2+lg16x
5.四人赛跑,假设他们跑过的路程fi(x)(其中i∈{1,2,3,4})和时间x(x>1)的函数关系分别是f1(x)=x2,f2(x)=4x,f3(x)=lg2x,f4(x)=2x,如果他们一直跑下去,最终跑在最前面的人具有的函数关系是( )
A.f1(x)=x2 B.f2(x)=4x
C.f3(x)=lg2x D.f4(x)=2x
6.某林区的森林蓄积量每年比上一年平均增长10.4%,要增长到原来的x倍,需经过y年,则函数y=f(x)的图象大致为( )
A B C D
7.某地为加强环境保护,决定使每年的绿地面积比上一年增长10%,那么从今年起,x年后绿地面积是今年的y倍,则函数y=f(x)的大致图象是( )
8.某工厂8年来某种产品的总产量C与时间t(年)的函数关系如图所示.
以下四种说法:
①前三年产量增长的速度越来越快;
②前三年产量增长的速度越来越慢;
③第三年后这种产品停止生产;
④第三年后产量保持不变.
其中说法正确的序号是________.
9.已知某工厂生产某种产品的月产量y与月份x满足关系y=a·0.5x+b,现已知该厂今年1月、2月生产该产品分别为1万件、1.5万件.则此厂3月份该产品的产量为________万件.
10.画出函数f(x)=eq \r(x)与函数g(x)=eq \f(1,4)x2-2的图象,并比较两者在[0,+∞)上的大小关系.
11.函数f(x)=2x和g(x)=x3的图象如图所示.设两函数的图象交于点A(x1,y1),B(x2,y2),且x1
(2)结合函数图象,判断f(6),g(6)的大小.
12.函数f(x)=2x和g(x)=2x的图象如图所示,设两函数的图象交于点A(x1,y1),B(x2,y2),且x1<x2.
(1)请指出图中曲线C1,C2分别对应的函数;
(2)结合函数图象,判断feq \b\lc\(\rc\)(\a\vs4\al\c1(\f(3,2)))与geq \b\lc\(\rc\)(\a\vs4\al\c1(\f(3,2))),f(2 019)与g(2 019)的大小.
13.函数f(x)=lg x,g(x)=0.3x-1的图象如图所示.
(1)试根据函数的增长差异指出曲线C1,C2分别对应的函数;
(2)比较两函数的增长差异(以两图象交点为分界点,对f(x),g(x)的大小进行比较).
14.函数f(x)=1.1x,g(x)=ln x+1,h(x)=xeq \s\up5(\f(1,2))的图象如图所示,试分别指出各曲线对应的函数,并比较三个函数的增长差异(以1,a,b,c,d,e为分界点).
15.某国2016年至2019年国内生产总值(单位:万亿元)如下表所示:
(1)画出函数图象,猜想y与x之间的函数关系,近似地写出一个函数关系式;
(2)利用得出的关系式求生产总值,与表中实际生产总值比较;
(3)利用关系式预测2033年该国的国内生产总值.
题型三 函数模型的选择问题
1.某人投资x元,获利y元,有以下三种方案.甲:y=0.2x,乙:y=lg2x+100,丙:y=1.005x,则投资500元,1 000元,1 500元时,应分别选择________方案.
2.在某实验中,测得变量x和变量y之间对应数据,如表.
则x,y最合适的函数是( )
A.y=2x B.y=x2-1
C.y=2x-2 D.y=lg2x
3.某人对东北一种松树的生长进行了研究,收集了其高度h(米)与生长时间t(年)的相关数据,
选择h=mt+b与h=lga(t+1)来刻画h与t的关系,你认为哪个符合?并预测第8年的松树高度.
4.某学校为了实现60万元的生源利润目标,准备制定一个激励招生人员的奖励方案:在生源利润达到5万元时,按生源利润进行奖励,且资金y(单位:万元)随生源利润x(单位:万元)的增加而增加,但资金总数不超过3万元,同时奖金不超过利润的20%.现有三个奖励模型:y=0.2x,y=lg5x,y=1.02x,其中哪个模型符合该校的要求?
5.芦荟是一种经济作物,可以入药,有美容、保健的功效.某人准备栽培并销售芦荟,为了解行情,进行市场调研.从4月1日起,芦荟的种植成本Q(单位:元/千克)与上市时间t(单位:天)的数据情况如下表:
(1)根据表中数据,从下列选项中选取一个最能反映芦荟种植成本Q与上市时间t的变化关系的函数式:
①Q=at+b,②Q=at2+bt+c,③Q=a·bt,④Q=algbt;
(2)利用你选择的函数,求芦荟种植成本最低时的上市时间及最低种植成本.
6.某债券市场发行三种债券,A种面值为100元,一年到期本息和为103元;B种面值为50元,半年到期本息和为51.4元;C种面值为100元,但买入价为97元,一年到期本息和为100元.作为购买者,分析这三种债券的收益,如果只能购买一种债券,你认为应购买哪种?
7.某工厂生产某种产品,每件产品的出厂价为50元,其成本价为25元,因为在生产过程中平均每生产一件产品有0.5立方米污水排出,为了净化环境,工厂设计两套方案对污水进行处理,并准备实施.
方案一:工厂的污水先净化处理后再排出,每处理1立方米污水所用原料费2元,并且每月排污设备损耗费为30000元;
方案二:工厂将污水排到污水处理厂统一处理,每处理1立方米污水需付14元的排污费,问:
(1)工厂每月生产3000件产品时,你作为厂长,在不污染环境,又节约资金的前提下应选择哪种方案?通过计算加以说明;
(2)若工厂每月生产6000件产品,你作为厂长,又该如何决策呢?
8.某鞋厂从今年1月份开始投产,并且前四个月的产量分别为1万件、1.2万件、1.3万件、1.37万件.由于产品质量好,款式受欢迎,前几个月的产品销售情况良好.为了使推销员在推销产品时,接受订单不至于过多或过少,需要估测以后几个月的产量.以这四个月的产品数据为依据,用一个函数模拟产品的月产量y与月份x的关系,模拟函数有三个备选:①一次函数f(x)=kx+b(k≠0),②二次函数g(x)=ax2+bx+c(a,b,c为常数,a≠0),③指数型函数m(x)=abx+c(a,b,c为常数,a≠0,b>0,b≠1).厂里分析,产量的增加是由于工人生产熟练和理顺了生产流程.厂里也暂时不准备增加设备和工人,假如你是厂长,将会采用什么办法估计以后几个月的产量?
y=ax(a>1)
y=lgax(a>1)
y=kx(k>0)
在(0,+∞)上的增减性
增函数
增函数
增函数
图象的变化趋势
随x增大逐渐近似与y轴平行
随x增大逐渐近似与x轴平行
保持固定增长速度
增长速度
①y=ax(a>1):随着x的增大,y增长速度越来越快,会远远大于y=kx(k>0)的增长速度,y=lgax(a>1)的增长速度越来越慢;
②存在一个x0,当x>x0时,有ax>kx>lgax
x
1
5
10
15
20
25
30
y1
2
26
101
226
401
626
901
y2
2
32
1 024
37 768
1.05×106
3.36×107
1.07×109
y3
2
10
20
30
40
50
60
y4
2
4.322
5.322
5.907
6.322
6.644
6.907
年份
2016
2017
2018
2019
x(年份代码)
0
1
2
3
生产总值y(万亿元)
8.206 7
8.944 2
9.593 3
10.239 8
x
0.50
0.99
2.01
3.98
y
-1.01
0.01
0.98
2.00
t(年)
1
2
3
4
5
6
h(米)
0.6
1
1.3
1.5
1.6
1.7
上市时间t
50
110
250
种植成本Q
15.0
10.8
15.0
专题38 不同函数增长的差异
1.三种函数模型的性质
2.几种函数模型的增长差异
(1)当a>1时,指数函数y=ax是增函数,并且当a越大时,其函数值的增长就越快.
(2)当a>1时,对数函数y=lgax是增函数,并且当a越小时,其函数值的增长就越快.
(3)当x>0,n>1时,幂函数y=xn显然也是增函数,并且当x>1时,n越大,其函数值的增长就越快.
(4)一般地,虽然指数函数y=ax(a>1)与一次函数y=kx(k>0)在区间[0,+∞)上都单调递增,但它们的增长速度不同,随着x的增大,指数函数y=ax(a>1)的增长速度越来越快,即使k的值远远大于a的值, y=ax(a>1)的增长速度最终都会超过并远远大于y=kx的增长速度.尽管在x的一定变化范围内, ax会小于kx,但由于指数函数y=ax(a>1)的增长最终会快于一次函数y=kx(k>0)的增长,因此,总会存在一个x0,当x>x0时,恒有ax>kx.
(5)一般地,虽然对数函数y=lgax(a>1)与一次函数y=kx(k>0)在区间(0,+∞)上都单调递增,但它们的增长速度不同.随着x的增大,一次函数y=kx(k>0)保持固定的增长速度,而对数函数y=lgax(a>1)的增长速度越来越慢.不论a的值比k的值大多少,在一定范围内, lgax可能会大于kx,但由于lgax的增长慢于kx的增长,因此总会存在一个x0,当x>x0时,恒有lgax
一般地,在区间(0,+∞)上,尽管函数y=ax(a>1),y=lgax(a>1)和y=xn(n>0)都是增函数,但它们的增长速度不同,而且不在同一个“档次”上.随着x的增大,y=ax(a>1)的增长速度越来越快,会超过并远远大于y=xn(n>0)的增长速度,而y=lgax(a>1)的增长速度则会越来越慢,总会存在一个x0,当x>x0时,就有lgax<xn<ax.
题型一 几类函数模型增长差异的比较
1.下列函数中,增长速度最快的是( )
A.y=2 019x B.y=2019
C.y=lg2 019x D.y=2 019x
[解析]指数函数y=ax,在a>1时呈爆炸式增长,并且随a值的增大,增长速度越快,应选A.
2.下列函数中,随x的增大,增长速度最快的是( )
A.y=1 B.y=x
C.y=3x D.y=lg3x
[解析]结合函数y=1,y=x,y=3x及y=lg3x的图象可知(图略),随着x的增大,增长速度最快的是y=3x.
3.当a>1时,有下列结论:
①指数函数y=ax,当a越大时,其函数值的增长越快;
②指数函数y=ax,当a越小时,其函数值的增长越快;
③对数函数y=lgax,当a越大时,其函数值的增长越快;
④对数函数y=lgax,当a越小时,其函数值的增长越快.
其中正确的结论是( )
A.①③ B.①④ C.②③ D.②④
[解析]结合指数函数及对数函数的图象可知①④正确.故选B.
4.下面对函数f(x)=lgeq \f(1,2)x,g(x)=eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))x与h(x)=-2x在区间(0,+∞)上的递减情况说法正确的是( )
A.f(x)递减速度越来越慢,g(x)递减速度越来越快,h(x)递减速度越来越慢
B.f(x)递减速度越来越快,g(x)递减速度越来越慢,h(x)递减速度越来越快
C.f(x)递减速度越来越慢,g(x)递减速度越来越慢,h(x)递减速度不变
D.f(x)递减速度越来越快,g(x)递减速度越来越快,h(x)递减速度越来越快
[解析]观察函数f(x)=lgeq \f(1,2)x,g(x)=eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))x与h(x)=-2x在区间(0,+∞)上的图象(如图)可知:函数f(x)的图象在区间(0,1)上递减较快,但递减速度逐渐变慢;在区间(1,+∞)上,递减较慢,且越来越慢,同样,函数g(x)的图象在区间(0,+∞)上,递减较慢,且递减速度越来越慢;函数h(x)的图象递减速度不变.
5.函数y=x2与函数y=xln x在区间(0,+∞)上增长较快的一个是________ .
[解析]当x变大时,x比ln x增长要快,∴x2要比xln x增长的要快.
6.四个变量y1,y2,y3,y4随变量x变化的数据如表:
关于x呈指数函数变化的变量是________.
[解析]以爆炸式增长的变量呈指数函数变化.从表格中可以看出,四个变量y1,y2,y3,y4均是从2开始变化,且都是越来越大,但是增长速度不同,其中变量y2的增长速度最快,画出它们的图象(图略),可知变量y2关于x呈指数型函数变化.故填y2.
7.以固定的速度向如图所示的瓶子中注水,则水面的高度h和时间t之间的关系是( )
[解析]水面的高度增长得越来越快,图象应为B.
8.小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间后,为了赶时间加快速度行驶.与以上事件吻合得最好的图象是( )
[解析]小明匀速运动时,所得图象为一条直线,且距离学校越来越近,故排除A.因交通堵塞停留了一段时间,与学校的距离不变,故排除D.后来为了赶时间加快速度行驶,故排除B.故选C.
9.生活经验告诉我们,当水注入容器(设单位时间内进水量相同)时,水的高度随着时间的变化而变化,在图中请选择与容器相匹配的图象,A对应________;B对应________;C对应________;D对应________.
[解析] A容器下粗上细,水高度的变化先慢后快,故与(4)对应;B容器为球形,水高度变化为快—慢—快,应与(1)对应;C,D容器都是柱形的,水高度的变化速度都应是直线型,但C容器细,D容器粗,故水高度的变化为:C容器快,与(3)对应,D容器慢,与(2)对应.
题型二 指数函数、对数函数、幂函数、一次函数模型的比较
1.y1=2x,y2=x2,y3=lg2x,当2
C.y1>y3>y2 D.y2>y3>y1
[解析]在同一平面直角坐标系内画出这三个函数的图象(图略),在区间(2,4)内,从上到下图象依次对应的函数为y2=x2,y1=2x,y3=lg2x,故y2>y1>y3.
2.下列各项是四种生意预期的收益y关于时间x的函数,从足够长远的角度看,更为有前途的生意是___.
①y=10×1.05x;②y=20+x1.5;③y=30+lg(x-1);④y=50.
[解析]结合三类函数的增长差异可知①的预期收益最大,故填①.
3.当2
C.2x>lg2x>x2D.x2>lg2x>2x
[解析]解法一:在同一平面直角坐标系中分别画出函数y=lg2x,y=x2,y=2x,在区间(2,4)上从上往下依次是y=x2,y=2x,y=lg2x的图象,所以x2>2x>lg2x.
解法二:比较三个函数值的大小,作为选择题,可以采用特殊值代入法.可取x=3,经检验易知选B.
4.某地区植被被破坏,土地沙漠化越来越严重,最近三年测得沙漠增加值分别为0.2万公顷、0.4万公顷和0.76万公顷,则沙漠增加数y公顷关于年数x的函数关系较为近似的是( )
A.y=0.2x B.y=eq \f(1,10)(x2+2x)
C.y=eq \f(2x,10) D.y=0.2+lg16x
[解析]用排除法,当x=1时,排除B项;当x=2时,排除D项;当x=3时,排除A项.
5.四人赛跑,假设他们跑过的路程fi(x)(其中i∈{1,2,3,4})和时间x(x>1)的函数关系分别是f1(x)=x2,f2(x)=4x,f3(x)=lg2x,f4(x)=2x,如果他们一直跑下去,最终跑在最前面的人具有的函数关系是( )
A.f1(x)=x2 B.f2(x)=4x
C.f3(x)=lg2x D.f4(x)=2x
[解析]显然四个函数中,指数函数是增长最快的,故最终跑在最前面的人具有的函数关系是f4(x)=2x,
故选D.
6.某林区的森林蓄积量每年比上一年平均增长10.4%,要增长到原来的x倍,需经过y年,则函数y=f(x)的图象大致为( )
A B C D
[解析]设该林区的森林原有蓄积量为a,由题意可得ax=a(1+0.104)y,故y=lg1.104x(x≥1),所以函数y=f(x)的图象大致为D中图象,故选D.
7.某地为加强环境保护,决定使每年的绿地面积比上一年增长10%,那么从今年起,x年后绿地面积是今年的y倍,则函数y=f(x)的大致图象是( )
[解析]设今年绿地面积为m,则有my=(1+10%)xm,∴y=1.1x,故选D.
8.某工厂8年来某种产品的总产量C与时间t(年)的函数关系如图所示.
以下四种说法:
①前三年产量增长的速度越来越快;
②前三年产量增长的速度越来越慢;
③第三年后这种产品停止生产;
④第三年后产量保持不变.
其中说法正确的序号是________.
[解析]由t∈[0,3]的图象联想到幂函数y=xα(0<α<1).反映了总产量C随时间t的变化而逐渐增长但速度越来越慢.由t∈[3,8]的图象可知,总产量C没有变化,即第三年后停产,所以②③正确.
9.已知某工厂生产某种产品的月产量y与月份x满足关系y=a·0.5x+b,现已知该厂今年1月、2月生产该产品分别为1万件、1.5万件.则此厂3月份该产品的产量为________万件.
[解析]∵y=a·0.5x+b,且当x=1时,y=1,当x=2时,y=1.5,则有eq \b\lc\{\rc\ (\a\vs4\al\c1(1=a×0.5+b,,1.5=a×0.25+b,))解得eq \b\lc\{\rc\ (\a\vs4\al\c1(a=-2,,b=2,))
∴y=-2×0.5x+2.
当x=3时,y=-2×0.125+2=1.75(万件).
10.画出函数f(x)=eq \r(x)与函数g(x)=eq \f(1,4)x2-2的图象,并比较两者在[0,+∞)上的大小关系.
[解析]函数f(x)与g(x)的图象如图所示.
根据图象易得:当0≤x<4时,f(x)>g(x);当x=4时,f(x)=g(x);当x>4时,f(x)
(2)结合函数图象,判断f(6),g(6)的大小.
[解析] (1)C1对应的函数为g(x)=x3,C2对应的函数为f(x)=2x.
(2)因为f(1)>g(1),f(2)
12.函数f(x)=2x和g(x)=2x的图象如图所示,设两函数的图象交于点A(x1,y1),B(x2,y2),且x1<x2.
(1)请指出图中曲线C1,C2分别对应的函数;
(2)结合函数图象,判断feq \b\lc\(\rc\)(\a\vs4\al\c1(\f(3,2)))与geq \b\lc\(\rc\)(\a\vs4\al\c1(\f(3,2))),f(2 019)与g(2 019)的大小.
[解析] (1)C1对应的函数为g(x)=2x,C2对应的函数为f(x)=2x.
(2)∵f(1)=g(1),f(2)=g(2),从图象上可以看出,当1<x<2时,f(x)<g(x),
∴feq \b\lc\(\rc\)(\a\vs4\al\c1(\f(3,2)))<geq \b\lc\(\rc\)(\a\vs4\al\c1(\f(3,2)));当x>2时,f(x)>g(x),∴f(2 019)>g(2 019).
13.函数f(x)=lg x,g(x)=0.3x-1的图象如图所示.
(1)试根据函数的增长差异指出曲线C1,C2分别对应的函数;
(2)比较两函数的增长差异(以两图象交点为分界点,对f(x),g(x)的大小进行比较).
[解析] (1)C1对应的函数为g(x)=0.3x-1,C2对应的函数为f(x)=lg x.
(2)当x
14.函数f(x)=1.1x,g(x)=ln x+1,h(x)=xeq \s\up5(\f(1,2))的图象如图所示,试分别指出各曲线对应的函数,并比较三个函数的增长差异(以1,a,b,c,d,e为分界点).
[解析]由指数爆炸、对数增长、幂函数增长的差异可得曲线C1对应的函数是f(x)=1.1x,曲线C2对应的函数是h(x)=xeq \s\up5(\f(1,2)),曲线C3对应的函数是g(x)=ln x+1.
由题图知,当x<1时,f(x)>h(x)>g(x);当1
当e
当b
15.某国2016年至2019年国内生产总值(单位:万亿元)如下表所示:
(1)画出函数图象,猜想y与x之间的函数关系,近似地写出一个函数关系式;
(2)利用得出的关系式求生产总值,与表中实际生产总值比较;
(3)利用关系式预测2033年该国的国内生产总值.
[解析] (1)画出函数图象,如图所示.
从函数的图象可以看出,画出的点近似地落在一条直线上,设所求的函数关系式为y=kx+b(k≠0).
把直线经过的两点(0,8.206 7)和(3,10.239 8)代入上式,解得k=0.677 7,b=8.206 7.
∴函数关系式为y=0.677 7x+8.206 7.
(2)由得到的函数关系式计算出2017年和2018年的国内生产总值分别为
0.677 7×1+8.206 7=8.884 4(万亿元),0.677 7×2+8.206 7=9.562 1(万亿元).
与实际的生产总值相比,误差不超过0.1万亿元.
(3)2033年,即x=17时,由(1)得y=0.677 7×17+8.206 7=19.727 6,
即预测2033年该国的国内生产总值约为19.727 6万亿元.
题型三 函数模型的选择问题
1.某人投资x元,获利y元,有以下三种方案.甲:y=0.2x,乙:y=lg2x+100,丙:y=1.005x,则投资500元,1 000元,1 500元时,应分别选择________方案.
[解析][将投资数分别代入甲、乙、丙的函数关系式中比较y值的大小即可求出.答案乙、甲、丙
2.在某实验中,测得变量x和变量y之间对应数据,如表.
则x,y最合适的函数是( )
A.y=2x B.y=x2-1
C.y=2x-2 D.y=lg2x
[解析]根据x=0.50,y=-1.01,代入计算,可以排除A;根据x=2.01,y=0.98,代入计算,可以排除B、C;将各数据代入函数y=lg2x,可知满足题意.故选D.
3.某人对东北一种松树的生长进行了研究,收集了其高度h(米)与生长时间t(年)的相关数据,
选择h=mt+b与h=lga(t+1)来刻画h与t的关系,你认为哪个符合?并预测第8年的松树高度.
[解析]据表中数据作出散点图如图:
由图可以看出用一次函数模型不吻合,选用对数型函数比较合理.
将(2,1)代入到h=lga(t+1)中,得1=lga3,解得a=3.即h=lg3(t+1).
当t=8时,h=lg3(8+1)=2,故可预测第8年松树的高度为2米.
4.某学校为了实现60万元的生源利润目标,准备制定一个激励招生人员的奖励方案:在生源利润达到5万元时,按生源利润进行奖励,且资金y(单位:万元)随生源利润x(单位:万元)的增加而增加,但资金总数不超过3万元,同时奖金不超过利润的20%.现有三个奖励模型:y=0.2x,y=lg5x,y=1.02x,其中哪个模型符合该校的要求?
[解析]借助工具作出函数y=3,y=0.2x,y=lg5x,y=1.02x的图象(如图所示).观察图象可知,在区间[5,60]上,y=0.2x,y=1.02x的图象都有一部分在直线y=3的上方,只有y=lg5x的图象始终在y=3和y=0.2x的下方,这说明只有按模型y=lg5x进行奖励才符合学校的要求.
5.芦荟是一种经济作物,可以入药,有美容、保健的功效.某人准备栽培并销售芦荟,为了解行情,进行市场调研.从4月1日起,芦荟的种植成本Q(单位:元/千克)与上市时间t(单位:天)的数据情况如下表:
(1)根据表中数据,从下列选项中选取一个最能反映芦荟种植成本Q与上市时间t的变化关系的函数式:
①Q=at+b,②Q=at2+bt+c,③Q=a·bt,④Q=algbt;
(2)利用你选择的函数,求芦荟种植成本最低时的上市时间及最低种植成本.
[解析] (1)由表中所提供的数据可知,反映芦荟种植成本Q与上市时间t的变化关系的函数不可能是常数函数,故用函数Q=at+b,Q=a·bt,Q=algbt中的任意一个来反映时都应有a≠0,而上面三个函数均为单调函数,这与表格提供的数据不符合,所以应选用二次函数Q=at2+bt+c进行描述.将表格所提供的三组数据分别代入函数Q=at2+bt+c,得eq \b\lc\{\rc\ (\a\vs4\al\c1(15.0=2500a+50b+c,,10.8=12100a+110b+c,,15.0=62500a+250b+c,))解得eq \b\lc\{\rc\ (\a\vs4\al\c1(a=\f(1,2000),,b=-\f(3,20),,c=\f(85,4).))所以反映芦荟种植成本Q与上市时间t的变化关系的函数为Q=eq \f(1,2000)t2-eq \f(3,20)t+eq \f(85,4).故选②.
(2)当t=150(天)时,芦荟种植成本最低,为Q=eq \f(1,2000)×1502-eq \f(3,20)×150+eq \f(85,4)=10(元/千克).
6.某债券市场发行三种债券,A种面值为100元,一年到期本息和为103元;B种面值为50元,半年到期本息和为51.4元;C种面值为100元,但买入价为97元,一年到期本息和为100元.作为购买者,分析这三种债券的收益,如果只能购买一种债券,你认为应购买哪种?
[解析]A种债券的收益是每100元一年到期收益3元;B种债券的半年利率为eq \f(51.4-50,50),所以100元一年到期的本息和为100eq \b\lc\(\rc\)(\a\vs4\al\c1(1+\f(51.4-50,50)))2≈105.68(元),收益为5.68元;C种债券的利率为eq \f(100-97,97),100元一年到期的本息和为100eq \b\lc\(\rc\)(\a\vs4\al\c1(1+\f(100-97,97)))≈103.09(元),收益为3.09元.通过以上分析,购买B种债券.
7.某工厂生产某种产品,每件产品的出厂价为50元,其成本价为25元,因为在生产过程中平均每生产一件产品有0.5立方米污水排出,为了净化环境,工厂设计两套方案对污水进行处理,并准备实施.
方案一:工厂的污水先净化处理后再排出,每处理1立方米污水所用原料费2元,并且每月排污设备损耗费为30000元;
方案二:工厂将污水排到污水处理厂统一处理,每处理1立方米污水需付14元的排污费,问:
(1)工厂每月生产3000件产品时,你作为厂长,在不污染环境,又节约资金的前提下应选择哪种方案?通过计算加以说明;
(2)若工厂每月生产6000件产品,你作为厂长,又该如何决策呢?
[解析] 设工厂每月生产x件产品时,选择方案一的利润为y1,选择方案二的利润为y2,由题意知
y1=(50-25)x-2×0.5x-30000=24x-30000.
y2=(50-25)x-14×0.5x=18x.
(1)当x=3000时,y1=42000,y2=54000,∵y1
8.某鞋厂从今年1月份开始投产,并且前四个月的产量分别为1万件、1.2万件、1.3万件、1.37万件.由于产品质量好,款式受欢迎,前几个月的产品销售情况良好.为了使推销员在推销产品时,接受订单不至于过多或过少,需要估测以后几个月的产量.以这四个月的产品数据为依据,用一个函数模拟产品的月产量y与月份x的关系,模拟函数有三个备选:①一次函数f(x)=kx+b(k≠0),②二次函数g(x)=ax2+bx+c(a,b,c为常数,a≠0),③指数型函数m(x)=abx+c(a,b,c为常数,a≠0,b>0,b≠1).厂里分析,产量的增加是由于工人生产熟练和理顺了生产流程.厂里也暂时不准备增加设备和工人,假如你是厂长,将会采用什么办法估计以后几个月的产量?
[解析]将已知前四个月的月产量y与月份x的关系记为A(1,1),B(2,1.2),C(3,1.3),D(4,1.37).
①对于一次函数f(x)=kx+b(k≠0),将B,C两点的坐标代入,有f(2)=2k+b=1.2,f(3)=3k+b=1.3,
解得k=0.1,b=1,故f(x)=0.1x+1.
所以f(1)=1.1,与实际误差为0.1,f(4)=1.4,与实际误差为0.03.
②对于二次函数g(x)=ax2+bx+c(a,b,c为常数,a≠0),将A,B,C三点的坐标代入,得
eq \b\lc\{\rc\ (\a\vs4\al\c1(a+b+c=1,,4a+2b+c=1.2,,9a+3b+c=1.3,))解得eq \b\lc\{\rc\ (\a\vs4\al\c1(a=-0.05,,b=0.35,,c=0.7,))故g(x)=-0.05x2+0.35x+0.7.
所以g(4)=-0.05×42+0.35×4+0.7=1.3,与实际误差为0.07.
③对于指数型函数m(x)=abx+c(a,b,c为常数,a≠0,b>0,b≠1),将A,B,C三点的坐标代入,得
eq \b\lc\{\rc\ (\a\vs4\al\c1(ab+c=1,,ab2+c=1.2,,ab3+c=1.3,))解得eq \b\lc\{\rc\ (\a\vs4\al\c1(a=-0.8,,b=0.5,,c=1.4.))故m(x)=-0.8×0.5x+1.4.
所以m(4)=-0.8×0.54+1.4=1.35,与实际误差为0.02.
比较上述3个模拟函数的优劣,既要考虑到剩余点的误差值最小,又要考虑生产的实际问题,比如增产的趋势和可能性,可以认为m(x)最佳,一是误差值最小,二是由于新建厂,开始随着工人技术、管理效益逐渐提高,一段时间内产量明显上升,但到一定时期后,设备不更新,那么产量必然要趋于稳定,而m(x)恰好反映了这种趋势,因此选用m(x)=-0.8×0.5x+1.4来估计以后几个月的产量比较接近客观实际.
y=ax(a>1)
y=lgax(a>1)
y=kx(k>0)
在(0,+∞)上的增减性
增函数
增函数
增函数
图象的变化趋势
随x增大逐渐近似与y轴平行
随x增大逐渐近似与x轴平行
保持固定增长速度
增长速度
①y=ax(a>1):随着x的增大,y增长速度越来越快,会远远大于y=kx(k>0)的增长速度,y=lgax(a>1)的增长速度越来越慢;
②存在一个x0,当x>x0时,有ax>kx>lgax
x
1
5
10
15
20
25
30
y1
2
26
101
226
401
626
901
y2
2
32
1 024
37 768
1.05×106
3.36×107
1.07×109
y3
2
10
20
30
40
50
60
y4
2
4.322
5.322
5.907
6.322
6.644
6.907
年份
2016
2017
2018
2019
x(年份代码)
0
1
2
3
生产总值y(万亿元)
8.206 7
8.944 2
9.593 3
10.239 8
x
0.50
0.99
2.01
3.98
y
-1.01
0.01
0.98
2.00
t(年)
1
2
3
4
5
6
h(米)
0.6
1
1.3
1.5
1.6
1.7
上市时间t
50
110
250
种植成本Q
15.0
10.8
15.0
高一数学同步备好课之题型全归纳(人教A版必修第一册)专题36对数函数的概念、图象及性质(原卷版+解析): 这是一份高一数学同步备好课之题型全归纳(人教A版必修第一册)专题36对数函数的概念、图象及性质(原卷版+解析),共23页。试卷主要包含了对数函数的概念,对数函数的图象及性质,反函数,底数对函数图象的影响,函数图象的变换规律,下列函数是对数函数的有等内容,欢迎下载使用。
高一数学同步备好课之题型全归纳(人教A版必修第一册)专题35对数的运算(原卷版+解析): 这是一份高一数学同步备好课之题型全归纳(人教A版必修第一册)专题35对数的运算(原卷版+解析),共22页。试卷主要包含了对数的运算性质,对数的换底公式,由换底公式推导的重要结论,求下列各式的值,计算等内容,欢迎下载使用。
高一数学同步备好课之题型全归纳(人教A版必修第一册)专题34对数的概念(原卷版+解析): 这是一份高一数学同步备好课之题型全归纳(人教A版必修第一册)专题34对数的概念(原卷版+解析),共17页。试卷主要包含了对数的定义,常用对数与自然对数,指数与对数的互化,对数的基本性质,若lg有意义,求x的取值范围等内容,欢迎下载使用。