终身会员
搜索
    上传资料 赚现金
    高一数学同步备好课之题型全归纳(人教A版必修第一册)专题49诱导公式五和公式六(原卷版+解析)
    立即下载
    加入资料篮
    高一数学同步备好课之题型全归纳(人教A版必修第一册)专题49诱导公式五和公式六(原卷版+解析)01
    高一数学同步备好课之题型全归纳(人教A版必修第一册)专题49诱导公式五和公式六(原卷版+解析)02
    高一数学同步备好课之题型全归纳(人教A版必修第一册)专题49诱导公式五和公式六(原卷版+解析)03
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高一数学同步备好课之题型全归纳(人教A版必修第一册)专题49诱导公式五和公式六(原卷版+解析)

    展开
    这是一份高一数学同步备好课之题型全归纳(人教A版必修第一册)专题49诱导公式五和公式六(原卷版+解析),共26页。试卷主要包含了公式五,公式六,化简等内容,欢迎下载使用。

    (1)角eq \f(π,2)-α与角α的终边关于直线y=x对称,如图所示.
    (2)公式:sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)-α))=csα,cseq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)-α))=sinα.
    2.公式六
    (1)公式五与公式六中角的联系eq \f(π,2)+α=π-eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)-α)).
    (2)公式:sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)+α))=csα,cseq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)+α))=-sinα.
    3.诱导公式一~六中的角可归纳为k·eq \f(π,2)±α的形式,可概括为“奇变偶不变,符号看象限”.
    ①“变”与“不变”是针对互余关系的函数而言的.
    ②“奇”“偶”是对诱导公式k·eq \f(π,2)±α中的整数k来讲的.
    ③“象限”指k·eq \f(π,2)±α中,将α看成锐角时,k·eq \f(π,2)±α所在的象限,根据“一全正,二正弦,三正切,四余弦”的符号规律确定原函数值的符号.
    4.利用诱导公式五、六,结合诱导公式二,还可以推出如下公式:
    sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(3π,2)-α))=-csα,cseq \b\lc\(\rc\)(\a\vs4\al\c1(\f(3π,2)-α))=-sinα,sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(3π,2)+α))=-csα,cseq \b\lc\(\rc\)(\a\vs4\al\c1(\f(3π,2)+α))=sinα.
    题型一 利用诱导公式化简与求值
    1.下列与sin θ的值相等的是( )
    A.sin(π+θ) B.sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)-θ)) C.cseq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)-θ)) D.cseq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)+θ))
    2.化简sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(3π,2)+α))=________.
    3.下列各式中,不正确的是( )
    A.sin(180°-α)=sinα B.cseq \b\lc\(\rc\)(\a\vs4\al\c1(\f(180°+α,2)))=sineq \f(α,2) C.cseq \b\lc\(\rc\)(\a\vs4\al\c1(\f(3π,2)-α))=-sinα D.tan(-α)=-tanα
    4.若sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)+θ))<0,且cseq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)-θ))>0,则θ是( )
    A.第一象限角 B.第二象限角
    C.第三角限角 D.第四象限角
    5.化简sin(π+α)cseq \b\lc\(\rc\)(\a\vs4\al\c1(\f(3π,2)+α))+sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)+α))cs(π+α)=________.
    6.化简:eq \f(sin\b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)-α))cs\b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)+α)),csπ+α)-eq \f(sin2π-αcs\b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)-α)),sinπ-α).
    7.化简:eq \f(sinθ-5πcs\b\lc\(\rc\)(\a\vs4\al\c1(-\f(π,2)-θ))cs8π-θ,sin\b\lc\(\rc\)(\a\vs4\al\c1(θ-\f(3π,2)))sin-θ-4π)=( )
    A.-sin θ B.sin θ C.cs θ D.-cs θ
    8.化简:eq \f(sin2π+αcsπ-αcs\b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)-α))cs\b\lc\(\rc\)(\a\vs4\al\c1(\f(7π,2)-α)),csπ-αsin3π-αsin-π+αsin\b\lc\(\rc\)(\a\vs4\al\c1(\f(5π,2)+α)))=________.
    9.化简:eq \f(csα-π,sinπ-α)·sineq \b\lc\(\rc\)(\a\vs4\al\c1(α-\f(π,2)))cseq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)+α)).
    10.eq \f(sin2π-α·cs\b\lc\(\rc\)(\a\vs4\al\c1(\f(π,3)+2α))csπ-α,tanα-3πsin\b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)+α))sin\b\lc\(\rc\)(\a\vs4\al\c1(\f(7π,6)-2α)))等于( )
    A.-csα B.csα C.sinα D.-sinα
    11.化简:eq \f(sin\b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)+α))cs\b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)-α)),cs(π+α))+eq \f(sin(π-α)cs\b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)+α)),sin(π+α)).
    12.已知sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(5π,2)+α))=eq \f(1,5),那么csα=
    13.已知csθ=-eq \f(3,5),则sineq \b\lc\(\rc\)(\a\vs4\al\c1(θ+\f(π,2)))=________.
    14.已知cseq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)+φ))=eq \f(\r(3),2),且|φ|<eq \f(π,2),则tan φ=________.
    15.如果cs(π+A)=-eq \f(1,2),那么sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)+A))=
    16.已知cseq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)+α))=-eq \f(3,5),且α是第二象限角,则sineq \b\lc\(\rc\)(\a\vs4\al\c1(α-\f(3π,2)))的结果是
    17.若cs(α+π)=-eq \f(2,3),则sin(-α-eq \f(3π,2))=
    18.已知cs α=eq \f(1,5),且α为第四象限角,那么cseq \b\lc\(\rc\)(\a\vs4\al\c1(α+\f(π,2)))=________.
    19.若sin(3π+α)=-eq \f(1,2),则cseq \b\lc\(\rc\)(\a\vs4\al\c1(\f(7π,2)-α))等于
    20.已知cs(π+α)=-eq \f(1,2),α为第一象限角,求cseq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)+α))的值.
    21.已知α∈eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(3π,2))),cseq \b\lc\(\rc\)(\a\vs4\al\c1(\f(3π,2)-α))=eq \f(\r(,3),2),则tan(2018π-α)=
    22.已知sineq \b\lc\(\rc\)(\a\vs4\al\c1(α+\f(π,4)))=eq \f(1,3),则cseq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,4)-α))的值为
    23.已知sineq \b\lc\(\rc\)(\a\vs4\al\c1(α-\f(π,4)))=eq \f(1,3),则cseq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,4)+α))等于
    24.已知sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,3)-α))=eq \f(1,2),则cseq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,6)+α))的值为________.
    25.已知sineq \b\lc\(\rc\)(\a\vs4\al\c1(α+\f(π,6)))=eq \f(3,5),则cseq \b\lc\(\rc\)(\a\vs4\al\c1(α+\f(2π,3)))的值为________.
    26.若sineq \b\lc\(\rc\)(\a\vs4\al\c1(α+\f(π,12)))=eq \f(1,3),则cseq \b\lc\(\rc\)(\a\vs4\al\c1(α+\f(7π,12)))=________.
    27.已知α是第四象限角,且cs(5°+α)=eq \f(4,5),则cs(α-85°)=________.
    28.已知sin 10°=k,则cs 620°的值为( )
    A.k B.-k
    C.±k D.不确定
    29.已知csα=eq \f(1,3),则sineq \b\lc\(\rc\)(\a\vs4\al\c1(α-\f(π,2)))·cseq \b\lc\(\rc\)(\a\vs4\al\c1(\f(3π,2)+α))tan(π-α)=________.
    30.已知cs 31°=m,则sin 239°tan 149°的值是( )
    A.eq \f(1-m2,m) B.eq \r(1-m2) C.-eq \f(1-m2,m) D.-eq \r(1-m2)
    31.若sin(180°+α)+cs(90°+α)=-a,则cs(270°-α)+2sin(360°-α)的值是
    32.化简eq \f(sin400°sin-230°,cs850°tan-50°)的结果为________.
    33.若f(cs x)=cs 2x,则f(sin 15°)的值为
    34.已知f(sin x)=cs 3x,则f(cs 10°)的值为
    35.若f(sinx)=3-cs2x,则f(csx)=( )
    A.3-cs2x B.3-sin2x C.3+cs2x D.3+sin2x
    36.计算sin21°+sin22°+sin23°+…+sin289°=
    37.在△ABC中,eq \r(3)sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)-A))=3sin(π-A),且csA=-eq \r(3)cs(π-B),则C=________.
    题型二 利用诱导公式证明恒等式
    1.求证:eq \f(tan2π-αcs\b\lc\(\rc\)(\a\vs4\al\c1(\f(3π,2)-α))cs6π-α,sin\b\lc\(\rc\)(\a\vs4\al\c1(α+\f(3π,2)))cs\b\lc\(\rc\)(\a\vs4\al\c1(α+\f(3π,2))))=-tanα.
    2.求证:eq \f(csπ-θ,csθ\b\lc\[\rc\](\a\vs4\al\c1(sin\b\lc\(\rc\)(\a\vs4\al\c1(\f(3π,2)-θ))-1)))+eq \f(cs2π-θ,csπ+θsin\b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)+θ))-sin\b\lc\(\rc\)(\a\vs4\al\c1(\f(3π,2)+θ)))=eq \f(2,sin2θ).
    3.求证:eq \f(sin θ+cs θ,sin θ-cs θ)=eq \f(2sin\b\lc\(\rc\)(\a\vs4\al\c1(θ-\f(3π,2)))cs\b\lc\(\rc\)(\a\vs4\al\c1(θ+\f(π,2)))-1,1-2sin2π+θ).
    4.求证:eq \f(cs6π+θsin-2π-θtan2π-θ,cs\b\lc\(\rc\)(\a\vs4\al\c1(\f(3π,2)+θ))sin\b\lc\(\rc\)(\a\vs4\al\c1(\f(3π,2)+θ)))=-tan θ.
    5.求证:eq \f(cs\b\lc\(\rc\)(\a\vs4\al\c1(\f(5π,2)+x)),sin\b\lc\(\rc\)(\a\vs4\al\c1(x-\f(5π,2)))tan6π-x)=-1.
    6.求证:eq \f(2sin\b\lc\(\rc\)(\a\vs4\al\c1(θ-\f(3π,2)))cs\b\lc\(\rc\)(\a\vs4\al\c1(θ+\f(π,2)))-1,1-2sin2θ)=eq \f(tan9π+θ+1,tanπ+θ-1).
    题型三 诱导公式的综合应用
    1.已知锐角α终边上一点P的坐标是(2sin 2,-2cs 2),则α等于________.
    2.已知f(α)=eq \f(cs\b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)+α))sin\b\lc\(\rc\)(\a\vs4\al\c1(\f(3π,2)-α)),cs-π-αtanπ-α),则feq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(25,3)π))的值为________.
    3.已知cseq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,6)-α))=eq \f(1,3),求cseq \b\lc\(\rc\)(\a\vs4\al\c1(\f(5,6)π+α))·sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(2π,3)-α))的值.
    4.已知cs(15°+α)=eq \f(3,5),α为锐角,求eq \f(tan435°-α+sinα-165°,cs195°+α·sin105°+α)的值.
    5.已知角α的终边经过点Peq \b\lc\(\rc\)(\a\vs4\al\c1(\f(4,5),-\f(3,5))).
    (1)求sin α的值;(2)求eq \f(sin\b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)-α))tanα-π,sinα+πcs3π-α)的值.
    6.已知tanθ=2,求eq \f(sin\b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)+θ))-csπ-θ,sin\b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)-θ))-sinπ-θ)的值.
    7.已知tan(3π+α)=2,则eq \f(sinα-3π+csπ-α+sin\b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)-α))-2cs\b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)+α)),-sin-α+csπ+α)=________.
    8.已知eq \f(sin θ+cs θ,sin θ-cs θ)=2,则sin(θ-5π)sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(3,2)π-θ))=________.
    9.已知csα=-eq \f(4,5),且α为第三象限角.求f(α)=eq \f(tanπ-α·sinπ-α·sin\b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)-α)),csπ+α)的值.
    10.已知cseq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)+α))=2sineq \b\lc\(\rc\)(\a\vs4\al\c1(α-\f(π,2))),则eq \f(sin(π-α)+cs(π+α),5cs\b\lc\(\rc\)(\a\vs4\al\c1(\f(5π,2)-α))+3sin\b\lc\(\rc\)(\a\vs4\al\c1(\f(7π,2)-α)))=________.
    11.已知sin(α-3π)=2cs(α-4π),求eq \f(sin(π-α)+5cs(2π-α),2sin(\f(3π,2)-α)-sin(-α))的值.
    12.已知角θ的顶点在坐标原点,始边与x轴正半轴重合,终边在直线3x-y=0上,
    则eq \f(sin\b\lc\(\rc\)(\a\vs4\al\c1(\f(3π,2)+θ))+2csπ-θ,sin\b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)-θ))-sinπ-θ)=________.
    13.已知cs(75°+α)=eq \f(1,3),则sin(α-15°)+cs(105°-α)的值是
    14.已知α,β∈(0,eq \f(π,2)),且α,β的终边关于直线y=x对称,若sin α=eq \f(3,5),则sin β=
    15.已知角α的终边在第二象限,且与单位圆交于点P(a,eq \f(3,5)),求eq \f(sin(\f(π,2)+α)+2sin(\f(π,2)-α),2cs(\f(3π,2)-α))的值.
    16.已知f(α)=eq \f(tanπ-αcs2π-αsin\b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)+α)),cs-α-π).
    (1)化简f(α);
    (2)若feq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)-α))=-eq \f(3,5),且α是第二象限角,求tan α.
    17.已知f(α)=eq \f(sinπ-αcs2π-αcs\b\lc\(\rc\)(\a\vs4\al\c1(-α+\f(3π,2))),cs\b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)-α))sin-π-α).
    (1)化简f(α);
    (2)若α为第三象限角,且cseq \b\lc\(\rc\)(\a\vs4\al\c1(α-\f(3π,2)))=eq \f(1,5),求f(α)的值;
    (3)若α=-eq \f(31π,3),求f(α)的值.
    18.已知sin α是方程5x2-7x-6=0的根,α是第三象限角,求eq \f(sin\b\lc\(\rc\)(\a\vs4\al\c1(-α-\f(3,2)π))cs\b\lc\(\rc\)(\a\vs4\al\c1(\f(3,2)π-α)),cs\b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)-α))sin\b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)+α)))·tan2(π-α)的值.
    19.若sinα=eq \f(\r(5),5),求eq \f(cs3π-α,sin\b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)+α))\b\lc\[\rc\](\a\vs4\al\c1(sin\b\lc\(\rc\)(\a\vs4\al\c1(\f(7π,2)+α))-1)))+eq \f(sin\b\lc\(\rc\)(\a\vs4\al\c1(\f(5π,2)-α)),cs3π+αsin\b\lc\(\rc\)(\a\vs4\al\c1(\f(5π,2)+α))-sin\b\lc\(\rc\)(\a\vs4\al\c1(\f(7π,2)+α)))的值.
    20.在△ABC中,sineq \f(A+B-C,2)=sineq \f(A-B+C,2),试判断△ABC的形状.
    21.已知sineq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(π,2)-α))·cseq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(5π,2)-α))=eq \f(60,169),且eq \f(π,4)<α<eq \f(π,2),求sin α与cs α的值.
    22.已知sin(π-α)-cs(π+α)=eq \f(\r(,2),3)(eq \f(π,2)<α<π),求下列各式的值.
    (1)sin α-cs α;
    (2)cs2(eq \f(π,2)+α)-cs2(-α).
    23.已知函数f(α)=eq \f(sin\b\lc\(\rc\)(\a\vs4\al\c1(α-\f(π,2)))cs\b\lc\(\rc\)(\a\vs4\al\c1(\f(3π,2)+α))tan(2π-α),tan(α+π)sin(α+π)).
    (1)化简f(α);
    (2)若f(α)·feq \b\lc\(\rc\)(\a\vs4\al\c1(α+\f(π,2)))=-eq \f(1,8),且eq \f(5π,4)≤α≤eq \f(3π,2),求f(α)+feq \b\lc\(\rc\)(\a\vs4\al\c1(α+\f(π,2)))的值;
    (3)若feq \b\lc\(\rc\)(\a\vs4\al\c1(α+\f(π,2)))=2f(α),求f(α)·feq \b\lc\(\rc\)(\a\vs4\al\c1(α+\f(π,2)))的值.
    24.是否存在角α,β,α∈(-eq \f(π,2),eq \f(π,2)),β∈(0,π),使等式sin(3π-α)=eq \r(2)cs(eq \f(π,2)-β),eq \r(3)cs(-α)=-eq \r(2)cs(π+β)同时成立?若存在,求出α,β的值;若不存在,请说明理由.
    25.已知f(cs x)=cs 17x.
    (1)求证:f(sin x)=sin 17x;
    (2)对于怎样的整数n,能由f(sin x)=sin nx推出f(cs x)=cs nx?
    专题49 诱导公式五和公式六
    1.公式五
    (1)角eq \f(π,2)-α与角α的终边关于直线y=x对称,如图所示.
    (2)公式:sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)-α))=csα,cseq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)-α))=sinα.
    2.公式六
    (1)公式五与公式六中角的联系eq \f(π,2)+α=π-eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)-α)).
    (2)公式:sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)+α))=csα,cseq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)+α))=-sinα.
    3.诱导公式一~六中的角可归纳为k·eq \f(π,2)±α的形式,可概括为“奇变偶不变,符号看象限”.
    ①“变”与“不变”是针对互余关系的函数而言的.
    ②“奇”“偶”是对诱导公式k·eq \f(π,2)±α中的整数k来讲的.
    ③“象限”指k·eq \f(π,2)±α中,将α看成锐角时,k·eq \f(π,2)±α所在的象限,根据“一全正,二正弦,三正切,四余弦”的符号规律确定原函数值的符号.
    4.利用诱导公式五、六,结合诱导公式二,还可以推出如下公式:
    sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(3π,2)-α))=-csα,cseq \b\lc\(\rc\)(\a\vs4\al\c1(\f(3π,2)-α))=-sinα,sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(3π,2)+α))=-csα,cseq \b\lc\(\rc\)(\a\vs4\al\c1(\f(3π,2)+α))=sinα.
    题型一 利用诱导公式化简与求值
    1.下列与sin θ的值相等的是( )
    A.sin(π+θ) B.sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)-θ)) C.cseq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)-θ)) D.cseq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)+θ))
    [解析]sin(π+θ)=-sin θ;sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)-θ))=cs θ;cseq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)-θ))=sin θ;cseq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)+θ))=-sin θ.
    2.化简sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(3π,2)+α))=________.
    [解析]sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(3π,2)+α))=sineq \b\lc\(\rc\)(\a\vs4\al\c1(π+\f(π,2)+α))=-sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)+α))=-cs α.
    3.下列各式中,不正确的是( )
    A.sin(180°-α)=sinα B.cseq \b\lc\(\rc\)(\a\vs4\al\c1(\f(180°+α,2)))=sineq \f(α,2) C.cseq \b\lc\(\rc\)(\a\vs4\al\c1(\f(3π,2)-α))=-sinα D.tan(-α)=-tanα
    [解析]由诱导公式知A、D正确.
    cseq \b\lc\(\rc\)(\a\vs4\al\c1(\f(3,2)π-α))=cseq \b\lc\(\rc\)(\a\vs4\al\c1(π+\f(π,2)-α))=-cseq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)-α))=-sinα,故C正确.
    cseq \b\lc\(\rc\)(\a\vs4\al\c1(\f(180°+α,2)))=cseq \b\lc\(\rc\)(\a\vs4\al\c1(90°+\f(α,2)))=-sineq \f(α,2),故B不正确.
    4.若sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)+θ))<0,且cseq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)-θ))>0,则θ是( )
    A.第一象限角 B.第二象限角
    C.第三角限角 D.第四象限角
    [解析]由于sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)+θ))=cs θ<0,cseq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)-θ))=sin θ>0,所以角θ的终边落在第二象限,故选B.
    5.化简sin(π+α)cseq \b\lc\(\rc\)(\a\vs4\al\c1(\f(3π,2)+α))+sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)+α))cs(π+α)=________.
    [解析]原式=(-sin α)·sin α+cs α·(-cs α)=-sin2α-cs2α=-1.
    6.化简:eq \f(sin\b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)-α))cs\b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)+α)),csπ+α)-eq \f(sin2π-αcs\b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)-α)),sinπ-α).
    [解析]原式=eq \f(cs α-sin α,-cs α)-eq \f(sin-αsin α,sin α)=sin α-(-sin α)=2sin α.
    7.化简:eq \f(sinθ-5πcs\b\lc\(\rc\)(\a\vs4\al\c1(-\f(π,2)-θ))cs8π-θ,sin\b\lc\(\rc\)(\a\vs4\al\c1(θ-\f(3π,2)))sin-θ-4π)=( )
    A.-sin θ B.sin θ C.cs θ D.-cs θ
    [解析]原式=eq \f(sinθ-πcs\b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)+θ))cs θ,cs θsin-θ)=eq \f(-sin θ-sin θcs θ,cs θ-sin θ)=-sin θ.
    8.化简:eq \f(sin2π+αcsπ-αcs\b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)-α))cs\b\lc\(\rc\)(\a\vs4\al\c1(\f(7π,2)-α)),csπ-αsin3π-αsin-π+αsin\b\lc\(\rc\)(\a\vs4\al\c1(\f(5π,2)+α)))=________.
    [解析]原式=eq \f(sinα·-csα·sinα·cs\b\lc\(\rc\)(\a\vs4\al\c1(\f(3π,2)-α)),-csα·sinα·[-sinπ-α]sin\b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)+α)))=eq \f(sinα·-sinα,-sinα·csα)=tanα
    9.化简:eq \f(csα-π,sinπ-α)·sineq \b\lc\(\rc\)(\a\vs4\al\c1(α-\f(π,2)))cseq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)+α)).
    [解析]原式=eq \f(cs[-π-α],sinα)·sineq \b\lc\[\rc\](\a\vs4\al\c1(-\b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)-α))))(-sinα)=eq \f(csπ-α,sinα)·eq \b\lc\[\rc\](\a\vs4\al\c1(-sin\b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)-α))))(-sinα)
    =eq \f(-csα,sinα)·(-csα)(-sinα)=-cs2α.
    10.eq \f(sin2π-α·cs\b\lc\(\rc\)(\a\vs4\al\c1(\f(π,3)+2α))csπ-α,tanα-3πsin\b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)+α))sin\b\lc\(\rc\)(\a\vs4\al\c1(\f(7π,6)-2α)))等于( )
    A.-csα B.csα C.sinα D.-sinα
    [解析]原式=eq \f(sin-α·cs\b\lc\(\rc\)(\a\vs4\al\c1(\f(π,3)+2α))·-csα,tanα·csα·sin\b\lc\[\rc\](\a\vs4\al\c1(\f(3,2)π-\b\lc\(\rc\)(\a\vs4\al\c1(\f(π,3)+2α)))))=eq \f(sinαcsα·cs\b\lc\(\rc\)(\a\vs4\al\c1(\f(π,3)+2α)),tanαcsα\b\lc\[\rc\](\a\vs4\al\c1(-cs\b\lc\(\rc\)(\a\vs4\al\c1(\f(π,3)+2α)))))=-csα.故选A.
    11.化简:eq \f(sin\b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)+α))cs\b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)-α)),cs(π+α))+eq \f(sin(π-α)cs\b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)+α)),sin(π+α)).
    [解析]因为sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)+α))=cs α,cseq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)-α))=sin α,
    cs(π+α)=-cs α,sin(π-α)=sin α,cseq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)+α))=-sin α,sin(π+α)=-sin α,
    所以原式=eq \f(cs α·sin α,-cs α)+eq \f(sin α·(-sin α),-sin α)=-sin α+sin α=0.
    12.已知sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(5π,2)+α))=eq \f(1,5),那么csα=
    [解析]sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(5π,2)+α))=sineq \b\lc\(\rc\)(\a\vs4\al\c1(2π+\f(π,2)+α))=sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)+α))=csα=eq \f(1,5).
    13.已知csθ=-eq \f(3,5),则sineq \b\lc\(\rc\)(\a\vs4\al\c1(θ+\f(π,2)))=________.
    [解析]sineq \b\lc\(\rc\)(\a\vs4\al\c1(θ+\f(π,2)))=csθ=-eq \f(3,5).
    14.已知cseq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)+φ))=eq \f(\r(3),2),且|φ|<eq \f(π,2),则tan φ=________.
    [解析]cseq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)+φ))=-sin φ=eq \f(\r(3),2),sin φ=-eq \f(\r(3),2),又∵|φ|<eq \f(π,2),∴cs φ=eq \f(1,2),故tan φ=-eq \r(3).
    15.如果cs(π+A)=-eq \f(1,2),那么sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)+A))=
    [解析]∵cs(π+A)=-csA=-eq \f(1,2),∴csA=eq \f(1,2),∴sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)+A))=csA=eq \f(1,2)
    16.已知cseq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)+α))=-eq \f(3,5),且α是第二象限角,则sineq \b\lc\(\rc\)(\a\vs4\al\c1(α-\f(3π,2)))的结果是
    [解析]∵cseq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)+α))=-sinα=-eq \f(3,5),∴sinα=eq \f(3,5),且α是第二象限角,
    ∴csα=-eq \r(1-sin2α)=-eq \f(4,5).而sineq \b\lc\(\rc\)(\a\vs4\al\c1(α-\f(3π,2)))=-sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(3π,2)-α))=-(-csα)=csα=-eq \f(4,5)
    17.若cs(α+π)=-eq \f(2,3),则sin(-α-eq \f(3π,2))=
    [解析]因为cs(α+π)=-cs α=-eq \f(2,3),所以cs α=eq \f(2,3).所以sineq \b\lc\(\rc\)(\a\vs4\al\c1(-α-\f(3π,2)))=cs α=eq \f(2,3).
    18.已知cs α=eq \f(1,5),且α为第四象限角,那么cseq \b\lc\(\rc\)(\a\vs4\al\c1(α+\f(π,2)))=________.
    [解析]因为cs α=eq \f(1,5),且α为第四象限角,所以sin α=-eq \r(1-cs2α)=-eq \f(2\r(6),5),
    所以cseq \b\lc\(\rc\)(\a\vs4\al\c1(α+\f(π,2)))=-sin α=eq \f(2\r(6),5).
    19.若sin(3π+α)=-eq \f(1,2),则cseq \b\lc\(\rc\)(\a\vs4\al\c1(\f(7π,2)-α))等于
    [解析]∵sin(3π+α)=-sin α=-eq \f(1,2),∴sin α=eq \f(1,2).
    ∴cseq \b\lc\(\rc\)(\a\vs4\al\c1(\f(7π,2)-α))=cseq \b\lc\(\rc\)(\a\vs4\al\c1(\f(3π,2)-α))=-cseq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)-α))=-sin α=-eq \f(1,2).
    20.已知cs(π+α)=-eq \f(1,2),α为第一象限角,求cseq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)+α))的值.
    [解析]因为cs(π+α)=-cs α=-eq \f(1,2),所以cs α=eq \f(1,2),又α为第一象限角.
    则cseq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)+α))=-sin α=-eq \r(1-cs2α)=- eq \r(1-\b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))\s\up12(2))=-eq \f(\r(3),2).
    21.已知α∈eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(3π,2))),cseq \b\lc\(\rc\)(\a\vs4\al\c1(\f(3π,2)-α))=eq \f(\r(,3),2),则tan(2018π-α)=
    [解析]由cseq \b\lc\(\rc\)(\a\vs4\al\c1(\f(3π,2)-α))=eq \f(\r(,3),2)得sin α=-eq \f(\r(,3),2),
    又0<α因为tan(2 018π-α)=tan(-α)=-tan α=-eq \r(,3)
    22.已知sineq \b\lc\(\rc\)(\a\vs4\al\c1(α+\f(π,4)))=eq \f(1,3),则cseq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,4)-α))的值为
    [解析]∵cseq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,4)-α))=cseq \b\lc\[\rc\](\a\vs4\al\c1(\f(π,2)-\b\lc\(\rc\)(\a\vs4\al\c1(\f(π,4)+α))))=sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,4)+α))=eq \f(1,3).
    23.已知sineq \b\lc\(\rc\)(\a\vs4\al\c1(α-\f(π,4)))=eq \f(1,3),则cseq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,4)+α))等于
    [解析]cseq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,4)+α))=cseq \b\lc\(\rc\)(\a\vs4\al\c1(α-\f(π,4)+\f(π,2)))=-sineq \b\lc\(\rc\)(\a\vs4\al\c1(α-\f(π,4)))=-eq \f(1,3).
    24.已知sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,3)-α))=eq \f(1,2),则cseq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,6)+α))的值为________.
    [解析]cseq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,6)+α))=cseq \b\lc\[\rc\](\a\vs4\al\c1(\f(π,2)-\b\lc\(\rc\)(\a\vs4\al\c1(\f(π,3)-α))))=sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,3)-α))=eq \f(1,2).
    25.已知sineq \b\lc\(\rc\)(\a\vs4\al\c1(α+\f(π,6)))=eq \f(3,5),则cseq \b\lc\(\rc\)(\a\vs4\al\c1(α+\f(2π,3)))的值为________.
    [解析]cseq \b\lc\(\rc\)(\a\vs4\al\c1(α+\f(2π,3)))=cseq \b\lc\[\rc\](\a\vs4\al\c1(\f(π,2)+\b\lc\(\rc\)(\a\vs4\al\c1(α+\f(π,6)))))=-sineq \b\lc\(\rc\)(\a\vs4\al\c1(α+\f(π,6)))=-eq \f(3,5).
    26.若sineq \b\lc\(\rc\)(\a\vs4\al\c1(α+\f(π,12)))=eq \f(1,3),则cseq \b\lc\(\rc\)(\a\vs4\al\c1(α+\f(7π,12)))=________.
    [解析]cseq \b\lc\(\rc\)(\a\vs4\al\c1(α+\f(7π,12)))=cseq \b\lc\[\rc\](\a\vs4\al\c1(\f(π,2)+\b\lc\(\rc\)(\a\vs4\al\c1(\f(π,12)+α))))=-sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,12)+α))=-eq \f(1,3).
    27.已知α是第四象限角,且cs(5°+α)=eq \f(4,5),则cs(α-85°)=________.
    [解析]因为α是第四象限角,且cs(5°+α)=eq \f(4,5)>0,所以5°+α是第四象限角,
    所以sin(5°+α)=-eq \r(1-cs25°+α)=-eq \f(3,5),
    所以cs(α-85°)=cs(5°+α-90°)=sin(5°+α)=-eq \f(3,5).
    28.已知sin 10°=k,则cs 620°的值为( )
    A.k B.-k
    C.±k D.不确定
    [解析]cs 620°=cs(360°+260°)=cs 260°=cs(270°-10°)=-sin 10°=-k.
    29.已知csα=eq \f(1,3),则sineq \b\lc\(\rc\)(\a\vs4\al\c1(α-\f(π,2)))·cseq \b\lc\(\rc\)(\a\vs4\al\c1(\f(3π,2)+α))tan(π-α)=________.
    [解析]sineq \b\lc\(\rc\)(\a\vs4\al\c1(α-\f(π,2)))cseq \b\lc\(\rc\)(\a\vs4\al\c1(\f(3π,2)+α))tan(π-α)=-csαsinα(-tanα)=sin2α=1-cs2α=1-eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,3)))2=eq \f(8,9).
    30.已知cs 31°=m,则sin 239°tan 149°的值是( )
    A.eq \f(1-m2,m) B.eq \r(1-m2) C.-eq \f(1-m2,m) D.-eq \r(1-m2)
    [解析]sin 239°tan 149°=sin(180°+59°)·tan(180°-31°)=-sin 59°(-tan 31°)
    =-sin(90°-31°)·(-tan 31°)=-cs 31°·(-tan 31°)=sin 31°=eq \r(1-cs231°)=eq \r(1-m2).
    31.若sin(180°+α)+cs(90°+α)=-a,则cs(270°-α)+2sin(360°-α)的值是
    [解析]由sin(180°+α)+cs(90°+α)=-a,得-sin α-sin α=-a,即sin α=eq \f(a,2),
    cs(270°-α)+2sin(360°-α)=-sin α-2sin α=-3sin α=-eq \f(3,2)a.
    32.化简eq \f(sin400°sin-230°,cs850°tan-50°)的结果为________.
    [解析]eq \f(sin400°sin-230°,cs850°tan-50°)=eq \f(sin360°+40°[-sin180°+50°],cs720°+90°+40°-tan50°)=eq \f(sin40°sin50°,sin40°tan50°)=eq \f(sin50°,\f(sin50°,cs50°))=cs50°.
    33.若f(cs x)=cs 2x,则f(sin 15°)的值为
    [解析]因为f(sin 15°)=f(cs 75°)=cs 150°=-eq \f(\r(3),2).
    34.已知f(sin x)=cs 3x,则f(cs 10°)的值为
    [解析] f(cs 10°)=f(sin 80°)=cs 240°=cs(180°+60°)=-cs 60°=-eq \f(1,2).
    35.若f(sinx)=3-cs2x,则f(csx)=( )
    A.3-cs2x B.3-sin2x C.3+cs2x D.3+sin2x
    [解析] f(csx)=feq \b\lc\[\rc\](\a\vs4\al\c1(sin\b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)-x))))=3-cs(π-2x)=3+cs2x,故选C.
    36.计算sin21°+sin22°+sin23°+…+sin289°=
    [解析]原式=(sin21°+sin289°)+(sin22°+sin288°)+…+(sin244°+sin246°)+sin245°=44+eq \f(1,2)=eq \f(89,2).
    37.在△ABC中,eq \r(3)sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)-A))=3sin(π-A),且csA=-eq \r(3)cs(π-B),则C=________.
    [解析]由题意得eq \b\lc\{\rc\ (\a\vs4\al\c1(\r(3)csA=3sinA, ①,csA=\r(3)csB, ②))
    由①得tanA=eq \f(\r(3),3),故A=eq \f(π,6).由②得csB=eq \f(cs\f(π,6),\r(3))=eq \f(1,2),故B=eq \f(π,3).故C=eq \f(π,2).
    题型二 利用诱导公式证明恒等式
    1.求证:eq \f(tan2π-αcs\b\lc\(\rc\)(\a\vs4\al\c1(\f(3π,2)-α))cs6π-α,sin\b\lc\(\rc\)(\a\vs4\al\c1(α+\f(3π,2)))cs\b\lc\(\rc\)(\a\vs4\al\c1(α+\f(3π,2))))=-tanα.
    [解析]左边=eq \f(tan2π-αcs\b\lc\(\rc\)(\a\vs4\al\c1(\f(3π,2)-α))cs6π-α,sin\b\lc\(\rc\)(\a\vs4\al\c1(α+\f(3π,2)))cs\b\lc\(\rc\)(\a\vs4\al\c1(α+\f(3π,2))))=eq \f(tan-α-sinαcsα,-csαsinα)=eq \f(-tanαsinαcsα,csαsinα)=-tanα=右边,
    所以原等式成立.
    2.求证:eq \f(csπ-θ,csθ\b\lc\[\rc\](\a\vs4\al\c1(sin\b\lc\(\rc\)(\a\vs4\al\c1(\f(3π,2)-θ))-1)))+eq \f(cs2π-θ,csπ+θsin\b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)+θ))-sin\b\lc\(\rc\)(\a\vs4\al\c1(\f(3π,2)+θ)))=eq \f(2,sin2θ).
    [解析]左边=eq \f(-csθ,csθ-csθ-1)+eq \f(csθ,-csθcsθ+csθ)
    =eq \f(1,1+csθ)+eq \f(1,1-csθ)=eq \f(1-csθ+1+csθ,1+csθ1-csθ)=eq \f(2,1-cs2θ)=eq \f(2,sin2θ)=右边.∴原式成立.
    3.求证:
    eq \f(sin θ+cs θ,sin θ-cs θ)=eq \f(2sin\b\lc\(\rc\)(\a\vs4\al\c1(θ-\f(3π,2)))cs\b\lc\(\rc\)(\a\vs4\al\c1(θ+\f(π,2)))-1,1-2sin2π+θ).
    [解析]右边=eq \f(-2sin\b\lc\(\rc\)(\a\vs4\al\c1(\f(3π,2)-θ))·-sin θ-1,1-2sin2θ)=eq \f(2sin\b\lc\[\rc\](\a\vs4\al\c1(π+\b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)-θ))))sin θ-1,1-2sin2θ)=eq \f(-2sin\b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)-θ))sin θ-1,1-2sin2θ)
    =eq \f(-2cs θsin θ-1,cs2θ+sin2θ-2sin2θ)=eq \f(sin θ+cs θ2,sin2θ-cs2θ)=eq \f(sin θ+cs θ,sin θ-cs θ)=左边,所以原等式成立.
    4.求证:eq \f(cs6π+θsin-2π-θtan2π-θ,cs\b\lc\(\rc\)(\a\vs4\al\c1(\f(3π,2)+θ))sin\b\lc\(\rc\)(\a\vs4\al\c1(\f(3π,2)+θ)))=-tan θ.
    [解析]左边=eq \f(cs θsin-θtan-θ,cs\b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)+θ))sin\b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)+θ)))=eq \f(cs θsin θtan θ,-sin θcs θ)=-tan θ=右边,所以原等式成立.
    5.求证:eq \f(cs\b\lc\(\rc\)(\a\vs4\al\c1(\f(5π,2)+x)),sin\b\lc\(\rc\)(\a\vs4\al\c1(x-\f(5π,2)))tan6π-x)=-1.
    [解析]因为eq \f(cs\b\lc\(\rc\)(\a\vs4\al\c1(\f(5π,2)+x)),sin\b\lc\(\rc\)(\a\vs4\al\c1(x-\f(5π,2)))tan6π-x)=eq \f(cs\b\lc\(\rc\)(\a\vs4\al\c1(2π+\f(π,2)+x)),sin\b\lc\(\rc\)(\a\vs4\al\c1(x-\f(π,2)-2π))tan-x)=eq \f(cs\b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)+x)),-sin\b\lc\(\rc\)(\a\vs4\al\c1(x-\f(π,2)))tan x)=eq \f(-sin x,cs xtan x)=-1
    =右边,所以原等式成立.
    6.求证:eq \f(2sin\b\lc\(\rc\)(\a\vs4\al\c1(θ-\f(3π,2)))cs\b\lc\(\rc\)(\a\vs4\al\c1(θ+\f(π,2)))-1,1-2sin2θ)=eq \f(tan9π+θ+1,tanπ+θ-1).
    [解析]左边=eq \f(-2cs θ·sin θ-1,sin2θ+cs2θ-2sin2θ)=eq \f(-sin θ+cs θ2,cs θ+sin θcs θ-sin θ)=eq \f(sin θ+cs θ,sin θ-cs θ),
    右边=eq \f(tan8π+π+θ+1,tanπ+θ-1)=eq \f(tanπ+θ+1,tanπ+θ-1)=eq \f(tan θ+1,tan θ-1)=eq \f(\f(sin θ,cs θ)+1,\f(sin θ,cs θ)-1)=eq \f(sin θ+cs θ,sin θ-cs θ),
    所以等式成立.
    题型三 诱导公式的综合应用
    1.已知锐角α终边上一点P的坐标是(2sin 2,-2cs 2),则α等于________.
    [解析] cs α=eq \f(2sin 2,\r(2sin 22+-2cs 22))=sin 2,∴α=2-eq \f(π,2).
    2.已知f(α)=eq \f(cs\b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)+α))sin\b\lc\(\rc\)(\a\vs4\al\c1(\f(3π,2)-α)),cs-π-αtanπ-α),则feq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(25,3)π))的值为________.
    [解析] ∵f(α)=eq \f(-sinα-csα,-csα-tanα)=csα,
    ∴feq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(25,3)π))=cseq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(25,3)π))=cseq \f(25,3)π=cseq \b\lc\(\rc\)(\a\vs4\al\c1(8π+\f(π,3)))=cseq \f(π,3)=eq \f(1,2).
    3.已知cseq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,6)-α))=eq \f(1,3),求cseq \b\lc\(\rc\)(\a\vs4\al\c1(\f(5,6)π+α))·sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(2π,3)-α))的值.
    [解析]cseq \b\lc\(\rc\)(\a\vs4\al\c1(\f(5,6)π+α))·sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(2π,3)-α))=cseq \b\lc\[\rc\](\a\vs4\al\c1(π-\b\lc\(\rc\)(\a\vs4\al\c1(\f(π,6)-α))))·sineq \b\lc\[\rc\](\a\vs4\al\c1(π-\b\lc\(\rc\)(\a\vs4\al\c1(\f(π,3)+α))))=-cseq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,6)-α))·sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,3)+α))
    =-cseq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,6)-α))·sineq \b\lc\[\rc\](\a\vs4\al\c1(\f(π,2)-\b\lc\(\rc\)(\a\vs4\al\c1(\f(π,6)-α))))=-cseq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,6)-α))·cseq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,6)-α))=-eq \f(1,3)×eq \f(1,3)=-eq \f(1,9).
    4.已知cs(15°+α)=eq \f(3,5),α为锐角,求eq \f(tan435°-α+sinα-165°,cs195°+α·sin105°+α)的值.
    [解析]原式=eq \f(tan360°+75°-α-sinα+15°,cs180°+15°+α·sin[180°+α-75°])=eq \f(tan75°-α-sinα+15°,-cs15°+α·[-sinα-75°])
    =-eq \f(1,cs15°+α·sin15°+α)+eq \f(sinα+15°,cs15°+α·cs15°+α).
    因为α为锐角,所以0°<α<90°,所以15°<α+15°<105°.
    又cs(15°+α)=eq \f(3,5),所以sin(15°+α)=eq \f(4,5),故原式=-eq \f(1,\f(3,5)×\f(4,5))+eq \f(\f(4,5),\f(3,5)×\f(3,5))=eq \f(5,36).
    5.已知角α的终边经过点Peq \b\lc\(\rc\)(\a\vs4\al\c1(\f(4,5),-\f(3,5))).
    (1)求sin α的值;(2)求eq \f(sin\b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)-α))tanα-π,sinα+πcs3π-α)的值.
    [解析] (1)因为点Peq \b\lc\(\rc\)(\a\vs4\al\c1(\f(4,5),-\f(3,5))),所以|OP|=1,sin α=-eq \f(3,5).
    (2)eq \f(sin\b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)-α))tanα-π,sinα+πcs3π-α)=eq \f(cs αtan α,-sin α-cs α)=eq \f(1,cs α),
    由三角函数定义知cs α=eq \f(4,5),故所求式子的值为eq \f(5,4).
    6.已知tanθ=2,求eq \f(sin\b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)+θ))-csπ-θ,sin\b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)-θ))-sinπ-θ)的值.
    [解析] eq \f(sin\b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)+θ))-csπ-θ,sin\b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)-θ))-sinπ-θ)=eq \f(csθ--csθ,csθ-sinθ)=eq \f(2csθ,csθ-sinθ)=eq \f(2,1-tanθ)=eq \f(2,1-2)=-2.
    7.已知tan(3π+α)=2,则eq \f(sinα-3π+csπ-α+sin\b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)-α))-2cs\b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)+α)),-sin-α+csπ+α)=________.
    [解析]由tan(3π+α)=2,得tanα=2,所以
    原式=eq \f(-sinα+-csα+csα-2-sinα,sinα-csα)=eq \f(sinα,sinα-csα)=eq \f(tanα,tanα-1)=eq \f(2,2-1)=2.
    8.已知eq \f(sin θ+cs θ,sin θ-cs θ)=2,则sin(θ-5π)sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(3,2)π-θ))=________.
    [解析]∵eq \f(sin θ+cs θ,sin θ-cs θ)=2, sin θ=3cs θ,∴tan θ=3.
    sin(θ-5π)sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(3,2)π-θ))=sin θcs θ=eq \f(sin θcs θ,sin2θ+cs2θ)=eq \f(tan θ,tan2θ+1)=eq \f(3,10).
    9.已知csα=-eq \f(4,5),且α为第三象限角.求f(α)=eq \f(tanπ-α·sinπ-α·sin\b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)-α)),csπ+α)的值.
    [解析]因为csα=-eq \f(4,5),且α为第三象限角,
    所以sinα=-eq \r(1-cs2α)=-eq \r(1-\b\lc\(\rc\)(\a\vs4\al\c1(-\f(4,5)))2)=-eq \f(3,5).
    所以f(α)=eq \f(-tanα·sinα·csα,-csα)=tanαsinα=eq \f(sinα,csα)·sinα=eq \f(-\f(3,5),-\f(4,5))×eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(3,5)))=-eq \f(9,20).
    10.已知cseq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)+α))=2sineq \b\lc\(\rc\)(\a\vs4\al\c1(α-\f(π,2))),则eq \f(sin(π-α)+cs(π+α),5cs\b\lc\(\rc\)(\a\vs4\al\c1(\f(5π,2)-α))+3sin\b\lc\(\rc\)(\a\vs4\al\c1(\f(7π,2)-α)))=________.
    [解析]因为cseq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)+α))=2sineq \b\lc\(\rc\)(\a\vs4\al\c1(α-\f(π,2))),所以sin α=2cs α.原式=eq \f(sin α-cs α,5sin α-3cs α)=eq \f(2cs α-cs α,10cs α-3cs α)=eq \f(1,7).
    11.已知sin(α-3π)=2cs(α-4π),求eq \f(sin(π-α)+5cs(2π-α),2sin(\f(3π,2)-α)-sin(-α))的值.
    [解析]因为sin(α-3π)=2cs(α-4π),所以-sin(3π-α)=2cs(4π-α),
    所以-sin(π-α)=2cs(-α),所以sin α=-2cs α,且cs α≠0,
    所以原式=eq \f(sin α+5cs α,-2cs α+sin α)=eq \f(-2cs α+5cs α,-2cs α-2cs α)=eq \f(3cs α,-4cs α)=-eq \f(3,4).
    12.已知角θ的顶点在坐标原点,始边与x轴正半轴重合,终边在直线3x-y=0上,
    则eq \f(sin\b\lc\(\rc\)(\a\vs4\al\c1(\f(3π,2)+θ))+2csπ-θ,sin\b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)-θ))-sinπ-θ)=________.
    [解析]设θ的终边上一点为P(x,3x)(x≠0),则tan θ=eq \f(y,x)=eq \f(3x,x)=3.
    因此eq \f(sin\b\lc\(\rc\)(\a\vs4\al\c1(\f(3π,2)+θ))+2csπ-θ,sin\b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)-θ))-sinπ-θ)=eq \f(-cs θ-2cs θ,cs θ-sin θ)=eq \f(-3cs θ,cs θ-sin θ)=eq \f(-3,1-tan θ)=eq \f(-3,1-3)=eq \f(3,2).
    13.已知cs(75°+α)=eq \f(1,3),则sin(α-15°)+cs(105°-α)的值是
    [解析] sin(α-15°)+cs(105°-α)=sin[(75°+α)-90°]+cs[180°-(75°+α)]
    =-cs(75°+α)-cs(75°+α)=-2cs(75°+α)=-eq \f(2,3).
    14.已知α,β∈(0,eq \f(π,2)),且α,β的终边关于直线y=x对称,若sin α=eq \f(3,5),则sin β=
    [解析]由α,β∈(0,eq \f(π,2)),且α,β的终边关于直线y=x对称知α+β=eq \f(π,2),因此β=eq \f(π,2)-α,
    所以sin β=sin(eq \f(π,2)-α)=cs α=eq \r(1-sin2α)=eq \f(4,5)
    15.已知角α的终边在第二象限,且与单位圆交于点P(a,eq \f(3,5)),求eq \f(sin(\f(π,2)+α)+2sin(\f(π,2)-α),2cs(\f(3π,2)-α))的值.
    [解析]因为角α的终边在第二象限且与单位圆交于点P(a,eq \f(3,5)),所以a2+eq \f(9,25)=1(a<0),
    所以a=-eq \f(4,5),所以sin α=eq \f(3,5),cs α=-eq \f(4,5),
    所以原式=eq \f(cs α+2cs α,-2sin α)=-eq \f(3,2)·eq \f(cs α,sin α)=eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(3,2)))×eq \f(-\f(4,5),\f(3,5))=2.
    16.已知f(α)=eq \f(tanπ-αcs2π-αsin\b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)+α)),cs-α-π).
    (1)化简f(α);
    (2)若feq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)-α))=-eq \f(3,5),且α是第二象限角,求tan α.
    [解析](1)f(α)=eq \f(tanπ-αcs2π-αsin\b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)+α)),cs-α-π)=eq \f(-tan α·cs α·cs α,-cs α)=sin α.
    (2)由sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)-α))=-eq \f(3,5),得cs α=-eq \f(3,5),
    又α是第二象限角,所以sin α=eq \r(1-cs2 α)=eq \f(4,5),则tan α=eq \f(sin α,cs α)=-eq \f(4,3).
    17.已知f(α)=eq \f(sinπ-αcs2π-αcs\b\lc\(\rc\)(\a\vs4\al\c1(-α+\f(3π,2))),cs\b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)-α))sin-π-α).
    (1)化简f(α);
    (2)若α为第三象限角,且cseq \b\lc\(\rc\)(\a\vs4\al\c1(α-\f(3π,2)))=eq \f(1,5),求f(α)的值;
    (3)若α=-eq \f(31π,3),求f(α)的值.
    [解析] (1)f(α)=eq \f(sinαcsα-sinα,sinα[-sinπ+α])=eq \f(csα-sinα,sinα)=-csα
    (2)∵cseq \b\lc\(\rc\)(\a\vs4\al\c1(α-\f(3π,2)))=-sinα=eq \f(1,5),∴sinα=-eq \f(1,5),又∵α为第三象限角,
    ∴csα=-eq \r(1-sin2α)=-eq \f(2\r(6),5),∴f(α)=eq \f(2\r(6),5).
    (3)feq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(31π,3)))=-cseq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(31π,3)))=-cseq \b\lc\(\rc\)(\a\vs4\al\c1(-6×2π+\f(5π,3)))=-cseq \f(5π,3)=-cseq \f(π,3)=-eq \f(1,2).
    18.已知sin α是方程5x2-7x-6=0的根,α是第三象限角,求eq \f(sin\b\lc\(\rc\)(\a\vs4\al\c1(-α-\f(3,2)π))cs\b\lc\(\rc\)(\a\vs4\al\c1(\f(3,2)π-α)),cs\b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)-α))sin\b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)+α)))·tan2(π-α)的值.
    [解析]方程5x2-7x-6=0的两根为x1=-eq \f(3,5),x2=2,因为-1≤sin α≤1,所以sin α=-eq \f(3,5).
    又α是第三象限角,所以cs α=-eq \f(4,5),tan α=eq \f(sin α,cs α)=eq \f(3,4),
    所以eq \f(sin\b\lc\(\rc\)(\a\vs4\al\c1(-α-\f(3,2)π))cs\b\lc\(\rc\)(\a\vs4\al\c1(\f(3,2)π-α)),cs\b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)-α))sin\b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)+α)))·tan2(π-α)=eq \f(sin\b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)-α))cs\b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)+α)),sin αcs α)·tan2α=eq \f(cs α-sin α,sin αcs α)·tan2α=-tan2α=-eq \f(9,16).
    19.若sinα=eq \f(\r(5),5),求eq \f(cs3π-α,sin\b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)+α))\b\lc\[\rc\](\a\vs4\al\c1(sin\b\lc\(\rc\)(\a\vs4\al\c1(\f(7π,2)+α))-1)))+eq \f(sin\b\lc\(\rc\)(\a\vs4\al\c1(\f(5π,2)-α)),cs3π+αsin\b\lc\(\rc\)(\a\vs4\al\c1(\f(5π,2)+α))-sin\b\lc\(\rc\)(\a\vs4\al\c1(\f(7π,2)+α)))的值.
    [解析] eq \f(cs3π-α,sin\b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)+α))\b\lc\[\rc\](\a\vs4\al\c1(sin\b\lc\(\rc\)(\a\vs4\al\c1(\f(7π,2)+α))-1)))+eq \f(sin\b\lc\(\rc\)(\a\vs4\al\c1(\f(5π,2)-α)),cs3π+αsin\b\lc\(\rc\)(\a\vs4\al\c1(\f(5π,2)+α))-sin\b\lc\(\rc\)(\a\vs4\al\c1(\f(7π,2)+α)))
    =eq \f(cs[2π+π-α],csα\b\lc\[\rc\](\a\vs4\al\c1(sin\b\lc\(\rc\)(\a\vs4\al\c1(3π+\f(π,2)+α))-1)))+eq \f(sin\b\lc\[\rc\](\a\vs4\al\c1(2π+\b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)-α)))),csπ+αsin\b\lc\[\rc\](\a\vs4\al\c1(2π+\b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)+α))))-sin\b\lc\[\rc\](\a\vs4\al\c1(3π+\b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)+α)))))
    =eq \f(-csα,csα-csα-1)+eq \f(csα,-csαcsα+csα)=eq \f(1,1+csα)+eq \f(1,1-csα)=eq \f(2,sin2α),
    因为sinα=eq \f(\r(5),5),所以eq \f(2,sin2α)=10,即原式=10.
    20.在△ABC中,sineq \f(A+B-C,2)=sineq \f(A-B+C,2),试判断△ABC的形状.
    解析]∵A+B+C=π,∴A+B-C=π-2C,A-B+C=π-2B.
    ∵sineq \f(A+B-C,2)=sineq \f(A-B+C,2),∴sineq \f(π-2C,2)=sineq \f(π-2B,2),∴sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)-C))=sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)-B)),即cs C=cs B.
    又∵B,C为△ABC的内角,∴C=B,∴△ABC为等腰三角形.
    21.已知sineq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(π,2)-α))·cseq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(5π,2)-α))=eq \f(60,169),且eq \f(π,4)<α<eq \f(π,2),求sin α与cs α的值.
    [解析] sineq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(π,2)-α))=-cs α,cseq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(5π,2)-α))=cseq \b\lc\(\rc\)(\a\vs4\al\c1(2π+\f(π,2)+α))=-sin α,
    ∴sin α·cs α=eq \f(60,169),即2sin α·cs α=eq \f(120,169).①
    又∵sin2α+cs2α=1,②
    ①+②得(sin α+cs α)2=eq \f(289,169),②-①得(sin α-cs α)2=eq \f(49,169).
    又∵α∈eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,4),\f(π,2))),∴sin α>cs α>0,即sin α+cs α>0,sin α-cs α>0,
    ∴sin α+cs α=eq \f(17,13),③
    sin α-cs α=eq \f(7,13),④
    (③+④)÷2得sin α=eq \f(12,13),(③-④)÷2得cs α=eq \f(5,13).
    22.已知sin(π-α)-cs(π+α)=eq \f(\r(,2),3)(eq \f(π,2)<α<π),求下列各式的值.
    (1)sin α-cs α;
    (2)cs2(eq \f(π,2)+α)-cs2(-α).
    [解析]由sin (π-α)-cs(π+α)=eq \f(\r(,2),3),得sin α+cs α=eq \f(\r(,2),3).将两边分别平方,得1+2sin αcs α=eq \f(2,9),
    所以2sin αcs α=-eq \f(7,9).又eq \f(π,2)<α<π,所以sin α>0,cs α<0.
    (1)因为(sin α-cs α)2=1-2sin αcs α=1-eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(7,9)))=eq \f(16,9),
    又sin α-cs α>0,所以sin α-cs α=eq \f(4,3).
    (2)cs2(eq \f(π,2)+α)-cs2 (-α)=sin2 α-cs2 α=(sin α+cs α)(sin α-cs α)=eq \f(\r(,2),3)×eq \f(4,3)=eq \f(4\r(,2),9).
    23.已知函数f(α)=eq \f(sin\b\lc\(\rc\)(\a\vs4\al\c1(α-\f(π,2)))cs\b\lc\(\rc\)(\a\vs4\al\c1(\f(3π,2)+α))tan(2π-α),tan(α+π)sin(α+π)).
    (1)化简f(α);
    (2)若f(α)·feq \b\lc\(\rc\)(\a\vs4\al\c1(α+\f(π,2)))=-eq \f(1,8),且eq \f(5π,4)≤α≤eq \f(3π,2),求f(α)+feq \b\lc\(\rc\)(\a\vs4\al\c1(α+\f(π,2)))的值;
    (3)若feq \b\lc\(\rc\)(\a\vs4\al\c1(α+\f(π,2)))=2f(α),求f(α)·feq \b\lc\(\rc\)(\a\vs4\al\c1(α+\f(π,2)))的值.
    [解析] (1)f(α)=eq \f(-cs αsin α(-tan α),tan α(-sin α))=-cs α.
    (2)feq \b\lc\(\rc\)(\a\vs4\al\c1(α+\f(π,2)))=-cseq \b\lc\(\rc\)(\a\vs4\al\c1(α+\f(π,2)))=sin α,因为f(α)·feq \b\lc\(\rc\)(\a\vs4\al\c1(α+\f(π,2)))=-eq \f(1,8),所以cs α·sin α=eq \f(1,8),
    可得(sin α-cs α)2=eq \f(3,4),由eq \f(5π,4)≤α≤eq \f(3π,2),得cs α>sin α,所以f(α)+feq \b\lc\(\rc\)(\a\vs4\al\c1(α+\f(π,2)))=sin α-cs α=-eq \f(\r(,3),2).
    (3)由(2)得feq \b\lc\(\rc\)(\a\vs4\al\c1(α+\f(π,2)))=2f(α)即为sin α=-2cs α,联立sin2 α+cs2 α=1,解得cs2 α=eq \f(1,5),
    所以f(α)·feq \b\lc\(\rc\)(\a\vs4\al\c1(α+\f(π,2)))=-sin αcs α=2cs2 α=eq \f(2,5).
    24.是否存在角α,β,α∈(-eq \f(π,2),eq \f(π,2)),β∈(0,π),使等式sin(3π-α)=eq \r(2)cs(eq \f(π,2)-β),eq \r(3)cs(-α)=-eq \r(2)cs(π+β)同时成立?若存在,求出α,β的值;若不存在,请说明理由.
    [解析]由条件,得eq \b\lc\{(\a\vs4\al\c1(sin α=\r(2)sin β,①,\r(3)cs α=\r(2)cs β,②))
    ①2+②2,得sin2α+3cs2α=2,所以sin2α=eq \f(1,2).
    又α∈(-eq \f(π,2),eq \f(π,2)),所以α=eq \f(π,4)或α=-eq \f(π,4).将α=eq \f(π,4)代入②,得cs β=eq \f(\r(3),2).
    又β∈(0,π),所以β=eq \f(π,6),代入①可知符合.将α=-eq \f(π,4)代入②得cs β=eq \f(\r(3),2),
    又β∈(0,π),所以β=eq \f(π,6),代入①可知不符合.
    综上可知,存在α=eq \f(π,4),β=eq \f(π,6)满足条件.
    25.已知f(cs x)=cs 17x.
    (1)求证:f(sin x)=sin 17x;
    (2)对于怎样的整数n,能由f(sin x)=sin nx推出f(cs x)=cs nx?
    [解析] (1)证明:f(sin x)=f eq \b\lc\[\rc\](\a\vs4\al\c1(cs\b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)-x))))=cseq \b\lc\[\rc\](\a\vs4\al\c1(17\b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)-x))))=cseq \b\lc\(\rc\)(\a\vs4\al\c1(8π+\f(π,2)-17x))=cseq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)-17x))=sin 17x.
    (2)f(cs x)=f eq \b\lc\[\rc\](\a\vs4\al\c1(sin\b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)-x))))=sineq \b\lc\[\rc\](\a\vs4\al\c1(n\b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)-x))))=sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(nπ,2)-nx))
    =eq \b\lc\{\rc\ (\a\vs4\al\c1(-sin nx,n=4k,,cs nx,n=4k+1,,sin nx,n=4k+2,,-cs nx,n=4k+3.))k∈Z,故所求的整数为n=4k+1,k∈Z.
    相关试卷

    高一数学同步备好课之题型全归纳(人教A版必修第一册)专题48诱导公式二、三、四(原卷版+解析): 这是一份高一数学同步备好课之题型全归纳(人教A版必修第一册)专题48诱导公式二、三、四(原卷版+解析),共26页。试卷主要包含了诱导公式二,诱导公式三,诱导公式四,四组诱导公式的记忆,四组诱导公式的作用,求值等内容,欢迎下载使用。

    高一数学同步备好课之题型全归纳(人教A版必修第一册)专题45弧度制(原卷版+解析): 这是一份高一数学同步备好课之题型全归纳(人教A版必修第一册)专题45弧度制(原卷版+解析),共29页。试卷主要包含了度量角的两种单位制,弧度数的计算,角度制与弧度制的换算,一些特殊角与弧度数的对应关系,与30°角终边相同的角的集合是等内容,欢迎下载使用。

    高一数学同步备好课之题型全归纳(人教A版必修第一册)专题44任意角(原卷版+解析): 这是一份高一数学同步备好课之题型全归纳(人教A版必修第一册)专题44任意角(原卷版+解析),共29页。试卷主要包含了角的概念,角的表示,角的分类,象限角,终边相同的角,给出下列四个命题,下列说法正确的是,下列命题正确的是等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        高一数学同步备好课之题型全归纳(人教A版必修第一册)专题49诱导公式五和公式六(原卷版+解析)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map