高中人教A版 (2019)7.1 条件概率与全概率公式教案配套课件ppt
展开1.结合古典概型,了解利用概率的加法公式和乘法公式推导出全概率公式的过程;2.理解全概率公式的形式并会利用全概率公式计算概率;3.了解贝叶斯公式以及公式的简单应用.
在上节计算按对银行储蓄卡密码的概率时,我们首先把一个复杂事件表示为一些简单事件运算的结果,然后利用概率的加法公式和乘法公式求其概率.下面,再看一个求复杂事件概率的问题.
上述过程采用的方法是:按照某种标准,将一个复杂事件表示为两个互斥事件的并,再由概率的加法公式和乘法公式求得这个复杂事件的概率.
我们称上面的公式为全概率公式(ttal prbability frmula).全概率公式是概率论中最基本的公式之一.
例 4 某学校有A,B两家餐厅,王同学第1天午餐时随机地选择一家餐厅用餐.如果第1天去A餐厅,那么第2天去A餐厅的概率为0.6;如果第1天去B餐厅,那么第2天去A餐厅的概率为0.8.计算王同学第2天去A餐厅用餐的概率.
分析:第2天去哪家餐厅用餐的概率受第1天在哪家餐厅用餐的影响,可根据第1天可能去的餐厅,将样本空间表示为“第1天去A餐厅”和“第1天去B餐厅”两个互斥事件的并,利用全概率公式求解.
因此,王同学第2天去A餐厅用餐的概率为0.7.
例5 有3台车床加工同一型号的零件,第1台加工的次品率为6%,第2,3台加工的次品率均为5%,加工出来的零件混放在一起.已知第1,2,3台车床加工的零件数分别占总数的25%,30%,45%.(1)任取一个零件,计算它是次品的概率;(2)如果取到的零件是次品,计算它是第i (i=1,2,3)台车床加工的概率.
将例5中的问题(2)一般化,可以得到贝叶斯公式.
例6 在数字通信中,信号是由数字0和1组成的序列.由于随机因素的干扰,发送的信号0或1有可能被错误地接收为1或0.已知发送信号0时,接收为0和1的概率分别为0.9和0.1;发送信号1时,接收为1和0的概率分别为0.95和0.05.假设发送信号0和1是等可能的.(1)分别求接收的信号为0和1的概率;*(2)已知接收的信号为0,求发送的信号是1的概率.
应用全概率公式的关键是寻找与该事件相关的完备事件组.当事件的发生与相继两个试验有关,第一次试验的各种结果直接对第二次试验产生影响,因此从第一次试验入手,找出完备事件组.当事件的发生是由诸多两两互不相容的原因A1,A2,…,An,…引起的,且只能在原因A1,A2,…,An,…下发生,那么这些原因就是一个完备事件组.在选择完备事件组的时候,一定要把产生结果的原因全找出来,不能遗漏,并且保证A1,A2,…,An,…为两两互不相容事件.
全概率公式为复杂事件的概率计算提供了一条有效途径,是概率论中一个有效的分析工具,其重要意义在于:对于一个复杂的事件B,若无法直接求出它的概率P(B),则可以“化整为零”,通过选择样本空间的划分将复杂事件B分解为若干个简单事件来进行处理,从而使分析问题的思路变得清晰条理,计算化繁为简,化难为易.
完成教材:第53页习题7.1第5,7,8题.
1.现有12道四选一的单选题,学生张君对其中9道题有思路,3道题完全没有思路.有思路的题做对的概率为0.9,没有思路的题只好任意猜一个答案,猜对答案的概率为0.25.张君从这12道题中随机选择1题,求他做对该题的概率.
即他做对该题的概率为0.7375.
2.两批同种规格的产品,第一批占40%,次品率为5%;第二批占60%,次品率为4%.将两批产品混合,从混合产品中任取1件.(1)求这件产品是合格品的概率;*(2)已知取到的是合格品,求它取自第一批产品的概率.
1.为了研究不同性别学生患色盲的比例,调查了某学校2000名学生,数据如下表所示.单位:人
从这2000人中随机选择1人.(1)已知选到的是男生,求他患色盲的概率;(2)已知选到的学生患色盲,求他是男生的概率.
2.从人群中随机选出1人,设B=“选出的人患有心脏病”,C=“选出的人是年龄大于50岁的心脏病患者”,请你判断P(B)和P(C)的大小,并说明理由.
3.甲、乙两人向同一目标各射击1次,已知甲命中目标的概率为0.6,乙命中目标的概率为0.5.已知目标至少被命中1次,求甲命中目标的概率.
解:设事件A为“目标至少被命中1次”,事件B为“甲命中目标”,
4.甲和乙两个箱子中各装有10个球,其中甲箱中有5个红球、5个白球,乙箱中有8个红球、2个白球.掷一枚质地均匀的骰子,如果点数为1或2,从甲箱子随机摸出1个球;如果点数为3,4,5,6,从乙箱子中随机摸出1个球.求摸到红球的概率.
5.在A,B,C三个地区暴发了流感,这三个地区分别有6%,5%,4%的人患了流感.假设这三个地区的人口数的比为5:7:8,现从这三个地区中任意选取一个人.(1)求这个人患流感的概率;*(2)如果此人患流感,求此人选自A地区的概率.
(1)设事件A,B,C分别表示:任意选取一个人,分别来自A,B,C地区.事件D表示:这个人患流感.
7.一批产品共有100件,其中5件为不合格品.收货方从中不放回地随机抽取产品进行检验,并按以下规则判断是否接受这批产品:如果抽检的第1件产品不合格,则拒绝整批产品;如果抽检的第1件产品合格,则再抽1件,如果抽检的第2件产品合格,则接受整批产品,否则拒绝整批产品.求这批产品被拒绝的概率.
解:设事件A为“抽检的第1件产品合格”,事件B为“抽检的第2件产品合格”.
8.在孟德尔豌豆试验中,子二代的基因型为DD,Dd,dd,其中D为显性基因,d为隐性基因,且这三种基因型的比为1:2:1.如果在子二代中任意选取2颗豌豆作为父本进行杂交试验,那么子三代中基因型为dd的概率是多大?
解:设事件A为“所选子二代基因型为Dd ”,事件B为“所选子二代基因型为dd ”,事件C为“子三代基因型为dd ”,
9.证明条件概率的性质(1)和(2).
人教A版 (2019)选择性必修 第三册7.1 条件概率与全概率公式教学演示课件ppt: 这是一份人教A版 (2019)选择性必修 第三册<a href="/sx/tb_c4000356_t3/?tag_id=26" target="_blank">7.1 条件概率与全概率公式教学演示课件ppt</a>,共25页。PPT课件主要包含了创设情境揭示课题,阅读精要研讨新知,例题研讨,学习例题的正规表达,学习例题的常规方法,从例题中学会思考,如何看例题,小组互动,探索与发现思考与感悟,归纳小结回顾重点等内容,欢迎下载使用。
数学人教A版 (2019)7.1 条件概率与全概率公式教学课件ppt: 这是一份数学人教A版 (2019)7.1 条件概率与全概率公式教学课件ppt,共23页。
高中数学人教A版 (2019)选择性必修 第三册7.1 条件概率与全概率公式教学课件ppt: 这是一份高中数学人教A版 (2019)选择性必修 第三册7.1 条件概率与全概率公式教学课件ppt,共43页。PPT课件主要包含了学习目标,由因求果等内容,欢迎下载使用。