年终活动
搜索
    上传资料 赚现金

    考点13二次函数的应用(精讲)-2024年中考数学一轮复习之核心考点精讲精练(全国通用)原卷版+解析版

    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      考点13 二次函数的应用(精讲)-2024年中考数学一轮复习之核心考点精讲精练(全国通用)(原卷版).docx
    • 解析
      考点13 二次函数的应用(精讲)-2024年中考数学一轮复习之核心考点精讲精练(全国通用)(解析版).docx
    考点13 二次函数的应用(精讲)-2024年中考数学一轮复习之核心考点精讲精练(全国通用)(原卷版)第1页
    考点13 二次函数的应用(精讲)-2024年中考数学一轮复习之核心考点精讲精练(全国通用)(原卷版)第2页
    考点13 二次函数的应用(精讲)-2024年中考数学一轮复习之核心考点精讲精练(全国通用)(原卷版)第3页
    考点13 二次函数的应用(精讲)-2024年中考数学一轮复习之核心考点精讲精练(全国通用)(解析版)第1页
    考点13 二次函数的应用(精讲)-2024年中考数学一轮复习之核心考点精讲精练(全国通用)(解析版)第2页
    考点13 二次函数的应用(精讲)-2024年中考数学一轮复习之核心考点精讲精练(全国通用)(解析版)第3页
    还剩15页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    考点13二次函数的应用(精讲)-2024年中考数学一轮复习之核心考点精讲精练(全国通用)原卷版+解析版

    展开

    这是一份考点13二次函数的应用(精讲)-2024年中考数学一轮复习之核心考点精讲精练(全国通用)原卷版+解析版,文件包含考点13二次函数的应用精讲-2024年中考数学一轮复习之核心考点精讲精练全国通用原卷版docx、考点13二次函数的应用精讲-2024年中考数学一轮复习之核心考点精讲精练全国通用解析版docx等2份试卷配套教学资源,其中试卷共64页, 欢迎下载使用。
    二次函数的应用在中考中较为常见,其中二次函数在实际生活中的应用多为选填题,出题率不是特别高,一般需要根据题意自行建立二次函数模型;而利用二次函数图象解决实际问题和最值问题则多为解答题,此类问题需要多注意题意的理解,而且一般计算数据较大,还需根据实际情况判断所求结果是否有合适,需要考生在做题过程中更为细心对待。
    【知识清单】
    1:二次函数的实际应用(☆☆)
    1)用二次函数解决实际问题的一般步骤:
    (1)审:仔细 审题 ,理清 题意 ;
    (2)设:找出题中的变量和常量,分析它们之间的关系,与图形相关的问题要结合图形具体分析,设出适当的 未知数 ;
    (3)列:用二次函数表示出变量和常量之间的关系,建立二次函数模型,写出二次函数的 解析式 ;
    (4)解:依据已知条件,借助二次函数的解析式、图象和性质等求解实际问题;
    (5)检:检验结果,进行合理取舍,得出符合实际意义的结论。
    2)利用二次函数解决利润最值的方法:巧设未知数,根据利润公式列出函数关系式,再利用二次函数的最值解决利润最大问题是否存在最大利润问题。
    3)利用二次函数解决拱桥(门)/隧道/喷泉/球类运行轨迹类问题的方法:先建立适当的 平面直角坐标系 ,再根据题意找出已知点的坐标,并求出抛物线的解析式,最后根据图象信息解决实际问题。
    4)利用二次函数解决面积最值的方法:先找好自变量及范围,再利用相关的图形面积公式,列出函数关系式,最后利用函数的最值解决面积最值问题。
    5)利用二次函数解决动点问题的方法:首先要明确动点在哪条直线或抛物线上运动,运动速度是多少,结合直线或抛物线的表达式设出动点的 坐标 或表示出与动点有关的线段 长度 ,最后结合题干中与动点有关的条件进行计算。
    2:二次函数的几何问题(☆☆☆)
    二次函数与几何知识联系密切,互相渗透,以点的坐标和线段长度的关系为纽带,把二次函数常与全相似、最大(小)面积、周长等结合起来,解决这类问题时,先要对已知和未知条件进行综合分析,用点的等、坐标和线段长度的联系,从图形中建立 二次函数 的模型,从而使问题得到解决解这类问题的关键就是要善于利用几何图形和二次函数的有关性质和知识,并注意挖掘题目中的一些隐含条件,以达到解题目的。
    1)二次函数与几何图形的长度(面积)问题
    二次函数与几何图形的长度(面积)问题一般是利用距离或面积公式表示出图形长度(面积)的函数关系式(一般是二次函数的表达式),再利用函数的解析式的特点求长度(面积)的最值问题;此外还会涉及到长度(面积)相等、给出长度(面积)的值等问题,其核心处理方法都是表示出长度(面积)的表达式,再去研究相关的性质。
    2)二次函数与特殊三角形
    (1)在二次函数的图象中研究等腰三角形问题,需要注意分类讨论思想的应用,找准顶确与底角分类讨论的关键,借助等腰三角形的等边对等角、等角对等边、三线合一等性质来转化已知条件是常用的处理手段;
    (2)在二次函数的图象中研究直角三角形问题,需要注意分类讨论思想的应用,找准直角顶点是分类讨论的关键,借助直角三角形的勾股定理,两锐角互补等性质来转化已知条件是常用的处理手段。
    3)二次函数特殊平行四边形
    在二次函数的图象中研究平行四边形的问题常会用到平行四边形的一些性质之间的转化,同时此类问题也会涉及到矩形、菱形、正方形的确定,其分析思想是互通的。
    4)二次函数与线段和、差的最值问题
    在二次函数的图象中研究线段的和、差最值问题,一般会用到将军饮马、胡不归、阿氏圆、瓜豆原理等来解决相关最值问题。
    5)利用二次函数解决存在性问题的方法:一般先假设该点存在,根据该点所在的直线或抛物线的表达式,设出该点的 坐标 ;然后用该点的坐标表示出与该点有关的线段 长度 或其他点的 坐标 等;最后结合题干中其他条件列出等式,求出该点的坐标,然后判别该点坐标是否符合题意,若符合题意,则该点存在,否则该点不存在。
    【易错点归纳】
    1. 二次函数在实际问题中的应用通常是在一定的取值范围内,一定要注意是否包含顶点坐标,如果顶点坐标不在取值范围内,应按照对称轴一侧的增减性探讨问题结论.
    【核心考点】
    核心考点1.二次函数的实际应用
    例1:(2023年江苏省泰州市中考数学真题)某公司的化工产品成本为30元/千克.销售部门规定:一次性销售1000千克以内时,以50元/千克的价格销售;一次性销售不低于1000千克时,每增加1千克降价元.考虑到降价对利润的影响,一次性销售不低于1750千克时,均以某一固定价格销售.一次性销售利润y(元)与一次性销售量x(千克)的函数关系如图所示.

    (1)当一次性销售800千克时利润为多少元?(2)求一次性销售量在之间时的最大利润;
    (3)当一次性销售多少千克时利润为22100元?
    变式1.(2023年浙江省湖州市中考数学真题)某水产经销商以每千克30元的价格购进一批某品种淡水鱼,由销售经验可知,这种淡水鱼的日销售量y(千克)与销售价格x(元/千克)存在一次函数关系,部分数据如下表所示:
    (1)试求出y关于x的函数表达式.(2)设该经销商销售这种淡水鱼的日销售利润为W元,如果不考虑其他因素,求当销售价格x为多少时,日销售利润W最大?最大的日销售利润是多少元?
    变式2.(2023年湖南省益阳市中考数学真题)某企业准备对A,B两个生产性项目进行投资,根据其生产成本、销售情况等因素进行分析得知:投资A项目一年后的收益(万元)与投入资金x(万元)的函数表达式为:,投资B项目一年后的收益(万元)与投入资金x(万元)的函数表达式为:.(1)若将10万元资金投入A项目,一年后获得的收益是多少?(2)若对A,B两个项目投入相同的资金m()万元,一年后两者获得的收益相等,则m的值是多少?(3)2023年,我国对小微企业施行所得税优惠政策.该企业将根据此政策获得的减免税款及其他结余资金共计32万元,全部投入到A,B两个项目中,当A,B两个项目分别投入多少万元时,一年后获得的收益之和最大?最大值是多少万元?
    例2:(2023年河南省中考数学真题)小林同学不仅是一名羽毛球运动爱好者,还喜欢运用数学知识对羽毛球比赛进行技术分析,下面是他对击球线路的分析.
    如图,在平面直角坐标系中,点A,C在x轴上,球网与y轴的水平距离,,击球点P在y轴上.若选择扣球,羽毛球的飞行高度与水平距离近似满足一次函数关系;若选择吊球,羽毛球的飞行高度与水平距离近似满足二次函数关系.

    (1)求点P的坐标和a的值.(2)小林分析发现,上面两种击球方式均能使球过网.要使球的落地点到C点的距离更近,请通过计算判断应选择哪种击球方式.
    变式1.(2023年浙江省嘉兴市中考数学真题)根据以下素材,探究完成任务.
    例3:(2023年山东省威海市中考数学真题)城建部门计划修建一条喷泉步行通道.图1是项目俯视示意图.步行通道的一侧是一排垂直于路面的柱形喷水装置,另一侧是方形水池.图2是主视示意图.喷水装置的高度是2米,水流从喷头A处喷出后呈抛物线路径落入水池内,当水流在与喷头水平距离为2米时达到最高点B,此时距路面的最大高度为3.6米.为避免溅起的水雾影响通道上的行人,计划安装一个透明的倾斜防水罩,防水罩的一端固定在喷水装置上的点处,另一端与路面的垂直高度为1.8米,且与喷泉水流的水平距离为0.3米.点到水池外壁的水平距离米,求步行通道的宽.(结果精确到0.1米)参考数据:

    变式1. (2023年吉林省长春市中考数学真题)年5月8日,商业首航完成——中国民商业运营国产大飞机正式起步.时分航班抵达北京首都机场,穿过隆重的“水门礼”(寓意“接风洗尘”、是国际民航中高级别的礼仪).如图①,在一次“水门礼”的预演中,两辆消防车面向飞机喷射水柱,喷射的两条水柱近似看作形状相同的地物线的一部分.如图②,当两辆消防车喷水口A、B的水平距离为米时,两条水柱在物线的顶点H处相遇,此时相遇点H距地面米,喷水口A、B距地面均为4米.若两辆消防车同时后退米,两条水柱的形状及喷水口、到地面的距离均保持不变,则此时两条水柱相遇点距地面 米.

    例4:(2022·河北保定·统考二模)如图,某跳水运动员进行10米跳台跳水训练,水面边缘点E的坐标为.运动员(将运动员看成一点)在空中运动的路线是经过原点O的抛物线.在跳某个规定动作时,运动员在空中最高处A点的坐标为,正常情况下,运动员在距水面高度5米以前,必须完成规定的翻腾、打开动作,并调整好入水姿势,否则就会失误.运动员入水后,运动路线为另一条抛物线.
    (1)求运动员在空中运动时对应抛物线的解析式并求出入水处B点的坐标;
    (2)若运动员在空中调整好入水姿势时,恰好距点E的水平距离为5米,问该运动员此次跳水会不会失误?通过计算说明理由;(3)在该运动员入水点的正前方有M,N两点,且,,该运动员入水后运动路线对应的抛物线解析式为且顶点C距水面4米,若该运动员出水点D在之间(包括M,N两点),请直接写出a的取值范围.
    变式1.(2023·广东深圳·校考模拟预测)已知某运动员在自由式滑雪大跳台比赛中取得优异成绩,为研究他从起跳至落在雪坡过程中的运动状态,如图,以起跳点为原点O,水平方向为x轴建立平面直角坐标系,我们研究发现他在空中飞行的高度y(米)与水平距离x(米)具有二次函数关系,记点A为该二次函数图象与x轴的交点,点B为该运动员的成绩达标点,轴于点C,相关数据如下:

    (1)请求出第一次跳跃的高度y(米)与水平距离x(米)的二次函数解析式______;
    (2)若该运动员第二次跳跃时高度y(米)与水平距离x(米)满足,则他第二次跳跃落地点与起跳点平面的水平距离为_____米,d_____30,成绩是否达标?_____.(填写是或否)
    例5:(2023年贵州省中考数学真题)如图①,是一座抛物线型拱桥,小星学习二次函数后,受到该图启示设计了一建筑物造型,它的截面图是抛物线的一部分(如图②所示),抛物线的顶点在处,对称轴与水平线垂直,,点在抛物线上,且点到对称轴的距离,点在抛物线上,点到对称轴的距离是1.(1)求抛物线的表达式;(2)如图②,为更加稳固,小星想在上找一点,加装拉杆,同时使拉杆的长度之和最短,请你帮小星找到点的位置并求出坐标;(3)为了造型更加美观,小星重新设计抛物线,其表达式为,当时,函数的值总大于等于9.求的取值范围.
    变式1.(2023·广东佛山·校考三模)古往今来,桥给人们的生活带来便利,解决跨水或者越谷的交通,便于运输工具或行人在桥上畅通无阻,中国桥梁的桥拱线大多采用圆弧形、抛物线形和悬链形,坐落在河北省赵县汶河上的赵州桥建于隋朝,距今已有约1400年的历史,是当今世界上现存最早、保存最完整的古代敝肩石拱桥,赵州桥的主桥拱便是圆弧形.
    (1)某桥A主桥拱是圆弧形(如图①中),已知跨度,拱高,则这条桥主桥拱的半径是______;(2)某桥B的主桥拱是抛物线形(如图②),若水面宽,拱顶P(抛物线顶点)距离水面,求桥拱抛物线的解析式;(3)如图③,某时桥A和桥B的桥下水位均上升了,求此时两桥的水面宽度.
    例6:(2023年黑龙江省大庆市中考数学真题)如图1,在平行四边形中,,已知点在边上,以1m/s的速度从点向点运动,点在边上,以的速度从点向点运动.若点,同时出发,当点到达点时,点恰好到达点处,此时两点都停止运动.图2是的面积与点的运动时间之间的函数关系图象(点为图象的最高点),则平行四边形的面积为( )

    A.B.C.D.
    变式1. (2023年辽宁省锦州市中考数学真题)如图,在中,,,,在中,,,与在同一条直线上,点C与点E重合.以每秒1个单位长度的速度沿线段所在直线向右匀速运动,当点B运动到点F时,停止运动.设运动时间为t秒,与重叠部分的面积为S,则下列图象能大致反映S与t之间函数关系的是( )

    A. B. C. D.
    核心考点2.二次函数综合问题
    例7:(2023年青海省西宁市中考数学真题)如图,在平面直角坐标系中,直线l与x轴交于点,与y轴交于点,抛物线经过点A,B,且对称轴是直线.

    (1)求直线l的解析式;(2)求抛物线的解析式;(3)点P是直线l下方抛物线上的一动点,过点P作轴,垂足为C,交直线l于点D,过点P作,垂足为M.求的最大值及此时P点的坐标.
    变式1.(2023年辽宁省抚顺市、葫芦岛市中考数学真题)如图,抛物线与x轴交于点A和点,与y轴交于点,点P为第一象限内抛物线上的动点过点P作轴于点E,交于点F.(1)求抛物线的解析式;(2)当的周长是线段长度的2倍时,求点P的坐标;
    (3)当点P运动到抛物线顶点时,点Q是y轴上的动点,连接,过点B作直线,连接并延长交直线于点M.当时,请直接写出点的坐标.

    例8:(2023年浙江省湖州市中考数学真题)如图1,在平面直角坐标系中,二次函数的图象与y轴的交点坐标为,图象的顶点为M.矩形的顶点D与原点O重合,顶点A,C分别在x轴,y轴上,顶点B的坐标为.

    (1)求c的值及顶点M的坐标,(2)如图2,将矩形沿x轴正方向平移t个单位得到对应的矩形.已知边,分别与函数的图象交于点P,Q,连接,过点P作于点G.①当时,求的长;②当点G与点Q不重合时,是否存在这样的t,使得的面积为1?若存在,求出此时t的值;若不存在,请说明理由.
    变式1.(2023年山东省青岛市中考数学真题)许多数学问题源于生活.雨伞是生活中的常用物品,我们用数学的眼光观察撑开后的雨伞(如图①)、可以发现数学研究的对象——抛物线.在如图②所示的直角坐标系中,伞柄在y轴上,坐标原点O为伞骨,的交点.点C为抛物线的顶点,点A,B在抛物线上,,关于y轴对称.分米,点A到x轴的距离是分米,A,B两点之间的距离是4分米.(1)求抛物线的表达式;(2)分别延长,交抛物线于点F,E,求E,F两点之间的距离;(3)以抛物线与坐标轴的三个交点为顶点的三角形面积为,将抛物线向右平移个单位,得到一条新抛物线,以新抛物线与坐标轴的三个交点为顶点的三角形面积为.若,求m的值.

    例9:(2023年湖北省十堰市中考数学真题)已知抛物线过点和点,与轴交于点.(1)求抛物线的解析式;(2)如图1,连接,点在线段上(与点不重合),点是的中点,连接,过点作交于点,连接,当面积是面积的3倍时,求点的坐标;(3)如图2,点是抛物线上对称轴右侧的点,是轴正半轴上的动点,若线段上存在点(与点不重合),使得,求的取值范围.

    变式1.(2023年辽宁省鞍山市中考数学真题)如图1,抛物线经过点,与y轴交于点,点E为第一象限内抛物线上一动点.(1)求抛物线的解析式.(2)直线与x轴交于点A,与y轴交于点D,过点E作直线轴,交于点F,连接.当时,求点E的横坐标.(3)如图2,点N为x轴正半轴上一点,与交于点M.若,,求点E的坐标.

    例10:(2023年青海省中考数学真题)如图,二次函数的图象与轴相交于点和点,交轴于点.(1)求此二次函数的解析式;(2)设二次函数图象的顶点为,对称轴与轴交于点,求四边形的面积(请在图1中探索);(3)二次函数图象的对称轴上是否存在点,使得是以为底边的等腰三角形?若存在,请求出满足条件的点的坐标;若不存在,请说明理由(请在图中探索).

    变式1.(2023年江苏省常州市中考数学真题)如图,二次函数的图像与x轴相交于点,其顶点是C.(1)_______;(2)D是第三象限抛物线上的一点,连接OD,;将原抛物线向左平移,使得平移后的抛物线经过点D,过点作x轴的垂线l.已知在l的左侧,平移前后的两条抛物线都下降,求k的取值范围;(3)将原抛物线平移,平移后的抛物线与原抛物线的对称轴相交于点Q,且其顶点P落在原抛物线上,连接PC、QC、PQ.已知是直角三角形,求点P的坐标.

    变式2.(2023年湖南省娄底市中考数学真题)如图,抛物线过点、点,交y轴于点C.(1)求b,c的值.(2)点是抛物线上的动点①当取何值时,的面积最大?并求出面积的最大值;②过点P作轴,交于点E,再过点P作轴,交抛物线于点F,连接,问:是否存在点P,使为等腰直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.

    例11:(2023年西藏自治区中考数学真题)在平面直角坐标系中,抛物线与x轴交于,两点,与y轴交于点C.

    (1)求抛物线的解析式;(2)如图甲,在y轴上找一点D,使为等腰三角形,请直接写出点D的坐标;(3)如图乙,点P为抛物线对称轴上一点,是否存在P、Q两点使以点A,C,P,Q为顶点的四边形是菱形?若存在,求出P、Q两点的坐标,若不存在,请说明理由.
    变式1.(2023年山东省淄博市中考数学真题)如图,一条抛物线经过的三个顶点,其中为坐标原点,点,点在第一象限内,对称轴是直线,且的面积为18
    (1)求该抛物线对应的函数表达式;(2)求点的坐标;(3)设为线段的中点,为直线上的一个动点,连接,,将沿翻折,点的对应点为.问是否存在点,使得以,,,为顶点的四边形是平行四边形?若存在,求出所有符合条件的点的坐标;若不存在,请说明理由.

    变式2.(2023年内蒙古中考数学真题)如图,在平面直角坐标系中,抛物线与轴的交点分别为和(点在点的左侧),与轴交于点,点是直线上方抛物线上一动点.(1)求抛物线的解析式;(2)如图1,过点作轴平行线交于点,过点作轴平行线交轴于点,求的最大值及点的坐标;(3)如图2,设点为抛物线对称轴上一动点,当点,点运动时,在坐标轴上确定点,使四边形为矩形,求出所有符合条件的点的坐标.

    例12:(2023年湖北省鄂州市中考数学真题)某数学兴趣小组运用《几何画板》软件探究型抛物线图象.发现:如图1所示,该类型图象上任意一点P到定点的距离,始终等于它到定直线l:的距离(该结论不需要证明).他们称:定点F为图象的焦点,定直线l为图象的准线,叫做抛物线的准线方程.准线l与y轴的交点为H.其中原点O为的中点,.例如,抛物线,其焦点坐标为,准线方程为l:,其中,.
    【基础训练】(1)请分别直接写出抛物线的焦点坐标和准线l的方程:_________,_________;
    【技能训练】(2)如图2,已知抛物线上一点到焦点F的距离是它到x轴距离的3倍,求点P的坐标;
    【能力提升】(3)如图3,已知抛物线的焦点为F,准线方程为l.直线m:交y轴于点C,抛物线上动点P到x轴的距离为,到直线m的距离为,请直接写出的最小值;
    【拓展延伸】该兴趣小组继续探究还发现:若将抛物线平移至.抛物线内有一定点,直线l过点且与x轴平行.当动点P在该抛物线上运动时,点P到直线l的距离始终等于点P到点F的距离(该结论不需要证明).例如:抛物线上的动点P到点的距离等于点P到直线l:的距离.
    请阅读上面的材料,探究下题:(4)如图4,点是第二象限内一定点,点P是抛物线上一动点,当取最小值时,请求出的面积.

    变式1.(2023年宁夏回族自治区中考数学真题)如图,抛物线与轴交于,两点,与轴交于点.已知点的坐标是,抛物线的对称轴是直线.

    直接写出点的坐标;(2)在对称轴上找一点,使的值最小.求点的坐标和的最小值;(3)第一象限内的抛物线上有一动点,过点作轴,垂足为,连接交于点.依题意补全图形,当的值最大时,求点的坐标
    销售价格x(元/千克)
    50
    40
    日销售量y(千克)
    100
    200
    如何把实心球掷得更远?
    素材1
    小林在练习投掷实心球,其示意图如图,第一次练习时,球从点A处被抛出,其路线是抛物线.点A距离地面,当球到OA的水平距离为时,达到最大高度为.

    素材2
    根据体育老师建议,第二次练习时,小林在正前方处(如图)架起距离地面高为的横线.球从点A处被抛出,恰好越过横线,测得投掷距离.

    问题解决
    任务1
    计算投掷距离
    建立合适的直角坐标系,求素材1中的投掷距离.
    任务2
    探求高度变化
    求素材2和素材1中球的最大高度的变化量
    任务3
    提出训练建议
    为了把球掷得更远,请给小林提出一条合理的训练建议.
    水平距离x(米)
    5
    10
    20
    30
    空中飞行的高度y(米)
    4.5
    6
    0

    相关试卷

    考点10一次函数(精讲)2024年中考数学一轮复习之核心考点精讲精练(全国通用)原卷版+解析版:

    这是一份考点10一次函数(精讲)2024年中考数学一轮复习之核心考点精讲精练(全国通用)原卷版+解析版,文件包含考点10一次函数精讲原卷版docx、考点10一次函数精讲解析版docx等2份试卷配套教学资源,其中试卷共39页, 欢迎下载使用。

    考点06分式方程(精讲)-2024年中考数学一轮复习之核心考点精讲精练(全国通用)原卷版+解析版:

    这是一份考点06分式方程(精讲)-2024年中考数学一轮复习之核心考点精讲精练(全国通用)原卷版+解析版,文件包含考点06分式方程精讲原卷版docx、考点06分式方程精讲解析版docx等2份试卷配套教学资源,其中试卷共24页, 欢迎下载使用。

    考点04二次根式(精讲)2024年中考数学一轮复习之核心考点精讲精练(全国通用)原卷版+解析版:

    这是一份考点04二次根式(精讲)2024年中考数学一轮复习之核心考点精讲精练(全国通用)原卷版+解析版,文件包含考点04二次根式精讲原卷版docx、考点04二次根式精讲解析版docx等2份试卷配套教学资源,其中试卷共30页, 欢迎下载使用。

    文档详情页底部广告位
    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map