终身会员
搜索
    上传资料 赚现金
    中考数学一轮复习满分突破(全国通用)专题31平移与旋转(原卷版+解析)
    立即下载
    加入资料篮
    中考数学一轮复习满分突破(全国通用)专题31平移与旋转(原卷版+解析)01
    中考数学一轮复习满分突破(全国通用)专题31平移与旋转(原卷版+解析)02
    中考数学一轮复习满分突破(全国通用)专题31平移与旋转(原卷版+解析)03
    还剩68页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    中考数学一轮复习满分突破(全国通用)专题31平移与旋转(原卷版+解析)

    展开
    这是一份中考数学一轮复习满分突破(全国通用)专题31平移与旋转(原卷版+解析),共71页。


    【知识要点】
    平移的概念:在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做平移变换。
    平移的性质:1)平移前后的两个图形形状和大小完全相同,对应角相等,对应边相等, 平移前后两个图形的周长和面积相等。
    2)对应线段(或对应边)平行(或在同一直线上)且相等。
    3)任意两组对应点的连线平行(或在同一条直线上)且相等。
    旋转的概念:把一个平面图形绕着平面内某一点转动一个角度,叫作图形的旋转。
    【补充说明】如图所示,是绕定点O逆时针旋转得到的,其中点A与点A’叫作对应点,线段OB与线段叫作对应线段,与叫作对应角,点叫作旋转中心,(或)的度数叫作旋转的角度。
    【注意】
    1)图形的旋转由旋转中心、旋转方向与旋转的角度所决定.
    2)旋转中心可以在图形内,也可以是图形外。
    【图形旋转的三要素】旋转中心、旋转方向和旋转角。
    旋转的特征:1)对应点到旋转中心的距离相等(例:OA与OA’);
    2)对应点与旋转中心所连线段的夹角等于旋转角(∠AOA’=∠BOB’=45°);
    3)旋转前后的两个图形全等(△ABO≌△A’B’O)。
    旋转作图的步骤方法:
    1)确定旋转中心、旋转方向、旋转角;
    2)找出图形上的关键点;
    3)连接图形上的关键点与旋转中心,然后按旋转方向分别将它们旋转一定的角度,得到关键点的对应点;
    4)按原图的顺序连接这些对应点,即得旋转后的图形。
    平移、旋转、轴对称之间的关系:
    考查题型一 图形的平移
    典例1.(2023·广西·统考中考真题)2022北京冬残奥会的会徽是以汉字“飞”为灵感来设计的,展现了运动员不断飞跃,超越自我,奋力拼搏,激励世界的冬残奥精神下列的四个图中,能由如图所示的会徽经过平移得到的是( )
    A.B.C.D.
    变式1-1.(2023·湖南怀化·统考中考真题)如图,△ABC沿BC方向平移后的得到△DEF,已知BC=5,EC=2,则平移的距离是( )
    A.1B.2C.3D.4
    变式1-2.(2023·浙江绍兴·统考中考真题)数学兴趣小组同学从“中国结”的图案(图1)中发现,用相同的菱形放置,可得到更多的菱形.如图2,用2个相同的菱形放置,得到3个菱形.下面说法正确的是( )
    A.用3个相同的菱形放置,最多能得到6个菱形
    B.用4个相同的菱形放置,最多能得到16个菱形
    C.用5个相同的菱形放置,最多能得到27个菱形
    D.用6个相同的菱形放置,最多能得到41个菱形
    变式1-4.(2023·四川乐山·统考中考真题)下列四个图形中,可以由图通过平移得到的是( )
    A.B.C.D.
    考查题型二 利用平移的性质求解
    典例2.(2023·浙江嘉兴·统考中考真题)“方胜”是中国古代妇女的一种发饰,其图案由两个全等正方形相叠组成,寓意是同心吉祥.如图,将边长为2cm的正方形ABCD沿对角线BD方向平移1cm得到正方形,形成一个“方胜”图案,则点D,之间的距离为( )
    A.1cmB.2cmC.(-1)cmD.(2-1)cm
    变式2-1.(2023·福建·统考中考真题)如图,现有一把直尺和一块三角尺,其中,,AB=8,点A对应直尺的刻度为12.将该三角尺沿着直尺边缘平移,使得△ABC移动到,点对应直尺的刻度为0,则四边形的面积是( )
    A.96B.C.192D.
    变式2-2.(2023·四川雅安·统考中考真题)如图,将沿边向右平移得到,交于点G.若..则的值为( )
    A.2B.4C.6D.8
    变式2-3.(2023·湖南益阳·统考中考真题)如图,将边长为3的正方形ABCD沿其对角线AC平移,使A的对应点A′满足AA′=AC,则所得正方形与原正方形重叠部分的面积是 _____.
    变式2-4.(2023·辽宁营口·统考中考真题)如图,将沿着方向平移得到,只需添加一个条件即可证明四边形是菱形,这个条件可以是____________.(写出一个即可)
    变式2-5.(2023·河南·统考中考真题)如图,将扇形AOB沿OB方向平移,使点O移到OB的中点处,得到扇形.若∠O=90°,OA=2,则阴影部分的面积为______.
    变式2-6.(2023·浙江台州·统考中考真题)如图,△ABC的边BC长为4cm.将△ABC平移2cm得到△A′B′C′,且BB′⊥BC,则阴影部分的面积为______.
    变式2-7.(2023·浙江金华·统考中考真题)如图,在中,.把沿方向平移,得到,连结,则四边形的周长为_____.
    考查题型三 平移(作图)
    典例3.(2023·陕西·统考中考真题)如图,△ABC的顶点坐标分别为.将平移后得到,且点A的对应点是,点B、C的对应点分别是.
    (1)点A、之间的距离是__________;
    (2)请在图中画出△A'B'C'.
    变式3-1.(2023·浙江温州·统考中考真题)如图,在的方格纸中,已知格点P,请按要求画格点图形(顶点均在格点上).
    (1)在图1中画一个锐角三角形,使P为其中一边的中点,再画出该三角形向右平移2个单位后的图形.
    (2)在图2中画一个以P为一个顶点的钝角三角形,使三边长都不相等,再画出该三角形绕点P旋转后的图形.
    考查题型四 平移的坐标变化规律
    典例4.(2023·山东日照·统考中考真题)在平面直角坐标系中,把点向右平移两个单位后,得到对应点的坐标是( )
    A.B.C.D.
    变式4-1.(2023·辽宁大连·统考中考真题)如图,在平面直角坐标系中,点A的坐标是,将线段向右平移4个单位长度,得到线段,点A的对应点C的坐标是_______.
    变式4-2.(2023·山东淄博·统考中考真题)如图,在平面直角坐标系中,平移△ABC至△A1B1C1的位置.若顶点A(﹣3,4)的对应点是A1(2,5),则点B(﹣4,2)的对应点B1的坐标是________.
    变式4-3.(2023·山东淄博·统考中考真题)在平面直角坐标系中,点关于轴的对称点为,将点向左平移3个单位得到点,则的坐标为__________.
    变式4-4.(2023·湖北·统考中考真题)如图,在平面直角坐标系中,动点P从原点O出发,水平向左平移1个单位长度,再竖直向下平移1个单位长度得到点;接着水平向右平移2个单位长度,再竖直向上平移2个单位长度得到点;接着水平向左平移3个单位长度,再竖直向下平移3个单位长度得到点;接着水平向右平移4个单位长度,再竖直向上平移4个单位长度得到点,…,按此作法进行下去,则点的坐标为___________.
    考查题型五 利用旋转的性质求解
    典例5.(2023·内蒙古包头·中考真题)如图,在中,,将绕点C顺时针旋转得到,其中点与点A是对应点,点与点B是对应点.若点恰好落在边上,则点A到直线的距离等于( )
    A.B.C.3D.2
    变式5-1.(2023·宁夏·中考真题)如图,直线,的边在直线上,,将绕点顺时针旋转至,边交直线于点,则______.
    变式5-2.(2023·辽宁阜新·统考中考真题)如图,在中,,,将绕点逆时针旋转,得到,则点到的距离是______.
    变式5-3.(2023·青海·统考中考真题)如图所示的图案由三个叶片组成,绕点O旋转120°后可以和自身重合,若每个叶片的面积为4cm2,∠AOB=120°,则图中阴影部分的面积为__________.
    变式5-4.(2023·山东济南·统考中考真题)如图1,△ABC是等边三角形,点D在△ABC的内部,连接AD,将线段AD绕点A按逆时针方向旋转60°,得到线段AE,连接BD,DE,CE.
    (1)判断线段BD与CE的数量关系并给出证明;
    (2)延长ED交直线BC于点F.
    ①如图2,当点F与点B重合时,直接用等式表示线段AE,BE和CE的数量关系为_______;
    ②如图3,当点F为线段BC中点,且ED=EC时,猜想∠BAD的度数,并说明理由.
    变式5-5.(2023·辽宁抚顺·统考中考真题)在中,,线段绕点A逆时针旋转至(不与重合),旋转角记为,的平分线与射线相交于点E,连接.
    (1)如图①,当时,的度数是_____________;
    (2)如图②,当时,求证:;
    (3)当时,请直接写出的值.
    变式5-6.(2023·山西·中考真题)综合与实践
    问题情境:在Rt△ABC中,∠BAC=90°,AB=6,AC=8.直角三角板EDF中∠EDF=90°,将三角板的直角顶点D放在Rt△ABC斜边BC的中点处,并将三角板绕点D旋转,三角板的两边DE,DF分别与边AB,AC交于点M,N,猜想证明:
    (1)如图①,在三角板旋转过程中,当点M为边AB的中点时,试判断四边形AMDN的形状,并说明理由;
    问题解决:
    (2)如图②,在三角板旋转过程中,当时,求线段CN的长;
    (3)如图③,在三角板旋转过程中,当AM=AN时,直接写出线段AN的长.
    变式5-7.(2023·贵州黔西·中考真题)如图1,D为等边△ABC内一点,将线段AD绕点A逆时针旋转60°得到AE,连接CE,BD的延长线与AC交于点G,与CE交于点F.
    (1)求证:BD=CE;
    (2)如图2,连接FA,小颖对该图形进行探究,得出结论:∠BFC=∠AFB=∠AFE.小颖的结论是否正确?若正确,请给出证明;若不正确,请说明理由.
    变式5-8.(2023·湖南株洲·统考中考真题)将一物体(视为边长为米的正方形)从地面上挪到货车车厢内.如图所示,刚开始点与斜面上的点重合,先将该物体绕点按逆时针方向旋转至正方形的位置,再将其沿方向平移至正方形的位置(此时点与点重合),最后将物体移到车厢平台面上.已知,,过点作于点,米,米.
    (1)求线段的长度;
    (2)求在此过程中点运动至点所经过的路程.
    考查题型六 旋转(作图)
    典例6.(2023·湖南·统考中考真题)如图所示的方格纸格长为一个单位长度)中,的顶点坐标分别为,,.
    (1)将沿轴向左平移5个单位,画出平移后的△(不写作法,但要标出顶点字母);
    (2)将绕点顺时针旋转,画出旋转后的△(不写作法,但要标出顶点字母);
    (3)在(2)的条件下,求点绕点旋转到点所经过的路径长(结果保留.
    变式6-1.(2023·辽宁阜新·中考真题)如图,在平面直角坐标系中,顶点的坐标分别为,,.
    (1)画出与关于y轴对称的;
    (2)将绕点顺时针旋转90°得到,弧是点A所经过的路径,则旋转中心的坐标为___________.
    (3)求图中阴影部分的面积(结果保留).
    变式6-2.(2023·湖北武汉·中考真题)在的网格中建立如图的平面直角坐标系,四边形的顶点坐标分别为,,,.仅用无刻度的直尺在给定网格中按下列步骤完成画图,并回答问题:
    (1)将线段绕点逆时针旋转,画出对应线段;
    (2)在线段上画点,使(保留画图过程的痕迹);
    (3)连接,画点关于直线的对称点,并简要说明画法.
    考查题型七 旋转的坐标变化规律
    典例7.(2023·山东青岛·统考中考真题)如图,将先向右平移3个单位,再绕原点O旋转,得到,则点A的对应点的坐标是( )
    A.B.C.D.
    变式7-1.(2023·黑龙江绥化·统考中考真题)如图,线段在平面直角坐标系内,A点坐标为,线段绕原点O逆时针旋转90°,得到线段,则点的坐标为( )
    A.B.C.D.
    变式7-2.(2023·河南·统考中考真题)如图,在平面直角坐标系中,边长为2的正六边形ABCDEF的中心与原点O重合,轴,交y轴于点P.将△OAP绕点O顺时针旋转,每次旋转90°,则第2022次旋转结束时,点A的坐标为( )
    A.B.C.D.
    变式7-3.(2023·四川内江·统考中考真题)如图,在平面直角坐标系中,点B、C、E在y轴上,Rt△ABC 经过变换得到Rt△ODE,若点C的坐标为(0,1),AC=2,则这种变换可以是( )
    A.△ABC绕点C顺时针旋转90°,再向下平移3
    B.△ABC绕点C顺时针旋转90°,再向下平移1
    C.△ABC绕点C逆时针旋转90°,再向下平移1
    D.△ABC绕点C逆时针旋转90°,再向下平移3
    变式7-4.(2023·贵州安顺·统考中考真题)如图,在平面直角坐标系中,将边长为2的正六边形绕点顺时针旋转个,得到正六边形,当时,正六边形的顶点的坐标是( )
    A.B.C.D.
    变式7-5.(2023·黑龙江牡丹江·统考中考真题)如图,△AOB中,OA=4,OB=6,AB=2,将△AOB绕原点O旋转90°,则旋转后点A的对应点A′的坐标是( )
    A.(4,2)或(﹣4,2)B.(2,﹣4)或(﹣2,4)
    C.(﹣2,2)或(2,﹣2)D.(2,﹣2)或(﹣2,2)
    变式7-6.(2023·四川达州·统考中考真题)在平面直角坐标系中,等边如图放置,点的坐标为,每一次将绕着点逆时针方向旋转,同时每边扩大为原来的2倍,第一次旋转后得到,第二次旋转后得到,…,依次类推,则点的坐标为( )
    A.B.
    C.D.
    变式7-7.(2023·山东淄博·统考中考真题)如图,正方形ABCD的中心与坐标原点O重合,将顶点D(1,0)绕点A(0,1)逆时针旋转90°得点D1,再将D1绕点B逆时针旋转90°得点D2,再将D2绕点C逆时针旋转90°得点D3,再将D3绕点D逆时针旋转90°得点D4,再将D4绕点A逆时针旋转90°得点D5……依此类推,则点D2022的坐标是________.
    考查题型八 旋转综合题(与线段有关)
    典例8.(2023·广西柳州·统考中考真题)如图,在正方形ABCD中,AB=4,G是BC的中点,点E是正方形内一个动点,且EG=2,连接DE,将线段DE绕点D逆时针旋转90°得到线段DF,连接CF,则线段CF长的最小值为 _____.
    变式8-1.(2023·辽宁盘锦·中考真题)如图,四边形ABCD是正方形,△ECF为等腰直角三角形,∠ECF=90°,点E在BC上,点F在CD上,P为EF中点,连接AF,G为AF中点,连接PG,DG,将Rt△ECF绕点C顺时针旋转,旋转角为α(0°≤α≤360°).
    (1)如图1,当α=0°时,DG与PG的关系为 ;
    (2)如图2,当α=90°时
    ①求证:△AGD≌△FGM;
    ②(1)中的结论是否成立?若成立,请写出证明过程;若不成立,请说明理由.
    变式8-2.(2023·江苏南通·统考中考真题)如图,矩形中,,点E在折线上运动,将绕点A顺时针旋转得到,旋转角等于,连接.
    (1)当点E在上时,作,垂足为M,求证;
    (2)当时,求的长;
    (3)连接,点E从点B运动到点D的过程中,试探究的最小值.
    考查题型九 旋转综合题(与面积有关)
    典例9.(2023·宁夏·中考真题)综合与实践
    知识再现
    如图,中,,分别以、、为边向外作的正方形的面积为、、.当,时,______.
    问题探究
    如图,中,.
    (1)如图,分别以、、为边向外作的等腰直角三角形的面积为、、,则、、之间的数量关系是______.
    (2)如图,分别以、、为边向外作的等边三角形的面积为、、,试猜想、、之间的数量关系,并说明理由.
    实践应用
    (1)如图,将图中的绕点逆时针旋转一定角度至,绕点顺时针旋转一定角度至,、相交于点.求证:;
    (2)如图,分别以图中的边、、为直径向外作半圆,再以所得图形为底面作柱体,、、为直径的半圆柱的体积分别为、、.若,柱体的高,直接写出的值.
    变式9-1.(2023·江西·统考中考真题)问题提出:某兴趣小组在一次综合与实践活动中提出这样一个问题:将足够大的直角三角板的一个顶点放在正方形中心O处,并绕点O逆时针旋转,探究直角三角板与正方形重叠部分的面积变化情况(已知正方形边长为2).
    (1)操作发现:如图1,若将三角板的顶点P放在点O处,在旋转过程中,当与重合时,重叠部分的面积为__________;当与垂直时,重叠部分的面积为__________;一般地,若正方形面积为S,在旋转过程中,重叠部分的面积与S的关系为__________;
    (2)类比探究:若将三角板的顶点F放在点O处,在旋转过程中,分别与正方形的边相交于点M,N.
    ①如图2,当时,试判断重叠部分的形状,并说明理由;
    ②如图3,当时,求重叠部分四边形的面积(结果保留根号);
    (3)拓展应用:若将任意一个锐角的顶点放在正方形中心O处,该锐角记为(设),将绕点O逆时针旋转,在旋转过程中,的两边与正方形的边所围成的图形的面积为,请直接写出的最小值与最大值(分别用含的式子表示),
    (参考数据:)
    联系
    变化后不改变图形的大小和形状,对应线段相等、对应角相等。
    区别
    变化方式
    不同
    平移:将一个图形沿某个方向移动一定距离。
    旋转:将一个图形绕一个顶点沿某个方向转一定角度。
    轴对称:将一个图形沿一条直线对折。
    对应线段、对应角之间的关系不同
    平移: 变化前后对应线段平行(或在一条直线上),对应点连线平行(或在一条直线上),对应角的两边平行(或在一条直线上)、方向一致。
    旋转: 变化前后任意一对对应点与旋转中心的连线所称的角都是旋转角。
    轴对称:对应线段或延长线如果相交,那么交点在对称轴上。
    确定条件
    不同
    平移:距离与方向
    旋转:旋转的三要素。
    轴对称:对称轴
    专题31 平移与旋转
    【考查题型】
    【知识要点】
    平移的概念:在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做平移变换。
    平移的性质:1)平移前后的两个图形形状和大小完全相同,对应角相等,对应边相等, 平移前后两个图形的周长和面积相等。
    2)对应线段(或对应边)平行(或在同一直线上)且相等。
    3)任意两组对应点的连线平行(或在同一条直线上)且相等。
    旋转的概念:把一个平面图形绕着平面内某一点转动一个角度,叫作图形的旋转。
    【补充说明】如图所示,是绕定点O逆时针旋转得到的,其中点A与点A’叫作对应点,线段OB与线段叫作对应线段,与叫作对应角,点叫作旋转中心,(或)的度数叫作旋转的角度。
    【注意】
    1)图形的旋转由旋转中心、旋转方向与旋转的角度所决定.
    2)旋转中心可以在图形内,也可以是图形外。
    【图形旋转的三要素】旋转中心、旋转方向和旋转角。
    旋转的特征:1)对应点到旋转中心的距离相等(例:OA与OA’);
    2)对应点与旋转中心所连线段的夹角等于旋转角(∠AOA’=∠BOB’=45°);
    3)旋转前后的两个图形全等(△ABO≌△A’B’O)。
    旋转作图的步骤方法:
    1)确定旋转中心、旋转方向、旋转角;
    2)找出图形上的关键点;
    3)连接图形上的关键点与旋转中心,然后按旋转方向分别将它们旋转一定的角度,得到关键点的对应点;
    4)按原图的顺序连接这些对应点,即得旋转后的图形。
    平移、旋转、轴对称之间的关系:
    考查题型一 图形的平移
    典例1.(2023·广西·统考中考真题)2022北京冬残奥会的会徽是以汉字“飞”为灵感来设计的,展现了运动员不断飞跃,超越自我,奋力拼搏,激励世界的冬残奥精神下列的四个图中,能由如图所示的会徽经过平移得到的是( )
    A.B.C.D.
    答案:D
    分析:根据平移的特点分析判断即可.
    【详解】根据题意,得
    不能由平移得到,
    故A不符合题意;
    不能由平移得到,
    故B不符合题意;
    不能由平移得到,
    故C不符合题意;
    能由平移得到,
    故D符合题意;
    故选D.
    【点睛】本题考查了平移的特点,熟练掌握平移的特点是解题的关键.
    变式1-1.(2023·湖南怀化·统考中考真题)如图,△ABC沿BC方向平移后的得到△DEF,已知BC=5,EC=2,则平移的距离是( )
    A.1B.2C.3D.4
    答案:C
    分析:根据题意判断BE的长就是平移的距离,利用已知条件求出BE即可.
    【详解】因为沿BC方向平移,点E是点B移动后的对应点,
    所以BE的长等于平移的距离,
    由图可知,点B、E、C在同一直线上,BC=5,EC=2,
    所以BE=BC-ED=5-2=3,
    故选 C.
    【点睛】本题考查了平移,正确找出平移对应点是求平移距离的关键.
    变式1-2.(2023·浙江绍兴·统考中考真题)数学兴趣小组同学从“中国结”的图案(图1)中发现,用相同的菱形放置,可得到更多的菱形.如图2,用2个相同的菱形放置,得到3个菱形.下面说法正确的是( )
    A.用3个相同的菱形放置,最多能得到6个菱形
    B.用4个相同的菱形放置,最多能得到16个菱形
    C.用5个相同的菱形放置,最多能得到27个菱形
    D.用6个相同的菱形放置,最多能得到41个菱形
    答案:B
    分析:根据平移和大菱形的位置得出菱形的个数进行判定即可
    【详解】如图所示,
    用2个相同的菱形放置,最多能得到3个菱形;
    用3个相同的菱形放置,最多能得到8个菱形,
    用4个相同的菱形放置,最多能得到16个菱形,
    用5个相同的菱形放置,最多能得到29个菱形,
    用6个相同的菱形放置,最多能得到47个菱形.
    故选:B.
    【点睛】本题考查了生活中的平移现象,菱形的判定,正确的识别图形是解题的关键.
    变式1-4.(2023·四川乐山·统考中考真题)下列四个图形中,可以由图通过平移得到的是( )
    A.B.C.D.
    答案:D
    分析:平移不改变图形的形状和大小.根据原图形可知平移后的图形飞机头向上,即可解题.
    【详解】考查图像的平移,平移前后的图像的大小、形状、方向是不变的,故选D.
    【点睛】本题考查了图形的平移,牢固掌握平移的性质即可解题.
    考查题型二 利用平移的性质求解
    典例2.(2023·浙江嘉兴·统考中考真题)“方胜”是中国古代妇女的一种发饰,其图案由两个全等正方形相叠组成,寓意是同心吉祥.如图,将边长为2cm的正方形ABCD沿对角线BD方向平移1cm得到正方形,形成一个“方胜”图案,则点D,之间的距离为( )
    A.1cmB.2cmC.(-1)cmD.(2-1)cm
    答案:D
    分析:先求出BD,再根据平移性质求得=1cm,然后由求解即可.
    【详解】解:由题意,BD=cm,
    由平移性质得=1cm,
    ∴点D,之间的距离为==()cm,
    故选:D.
    【点睛】本题考查平移性质、正方形的性质,熟练掌握平移性质是解答的关键.
    变式2-1.(2023·福建·统考中考真题)如图,现有一把直尺和一块三角尺,其中,,AB=8,点A对应直尺的刻度为12.将该三角尺沿着直尺边缘平移,使得△ABC移动到,点对应直尺的刻度为0,则四边形的面积是( )
    A.96B.C.192D.
    答案:B
    分析:根据直尺与三角尺的夹角为60°,根据四边形的面积为,即可求解.
    【详解】解:依题意为平行四边形,
    ∵,,AB=8,.
    ∴平行四边形的面积=
    故选B
    【点睛】本题考查了解直角三角形,平移的性质,掌握平移的性质是解题的关键.
    变式2-2.(2023·四川雅安·统考中考真题)如图,将沿边向右平移得到,交于点G.若..则的值为( )
    A.2B.4C.6D.8
    答案:B
    分析:根据平移的性质可得AD=BE,且AD∥BE,故可得△CEG∽△ADG,由相似三角形的性质及已知条件即可求得△CEG的面积.
    【详解】由平移的性质可得:AD=BE,且AD∥BE
    ∴△CEG∽△ADG







    故选:B.
    【点睛】本题考查了平移的性质及相似三角形的判定与性质,相似三角形的性质是本题的关键.
    变式2-3.(2023·湖南益阳·统考中考真题)如图,将边长为3的正方形ABCD沿其对角线AC平移,使A的对应点A′满足AA′=AC,则所得正方形与原正方形重叠部分的面积是 _____.
    答案:4
    分析:由正方形边长为3,可求AC=3,则AA′=AC=,由平移可得重叠部分是正方形,根据正方形的面积公式可求重叠部分面积.
    【详解】解:∵正方形ABCD的边长为3,
    ∴AC=3,
    ∴AA′=AC=,
    ∴A′C=2,
    由题意可得重叠部分是正方形,
    ∴重叠部分的正方形的边长为,
    ∴S重叠部分=4.
    故答案为:4.
    【点睛】本题考查了正方形的性质,平移的性质,关键是灵活运用这些性质解决问题.
    变式2-4.(2023·辽宁营口·统考中考真题)如图,将沿着方向平移得到,只需添加一个条件即可证明四边形是菱形,这个条件可以是____________.(写出一个即可)
    答案:AB=BE(答案不唯一)
    分析:由题目提供的条件可以得到四边形是平行四边形,再添加一个条件使其成为菱形即可.
    【详解】解:添加AB=BE,
    ∵将沿着方向平移得到,
    ∴AB=DE,AB∥DE,
    ∴四边形ABED是平行四边形,
    又∵AB=BE,
    ∴四边形是菱形,
    故答案为:AB=BE(答案不唯一)
    【点睛】本题考查了平行四边形的判定及性质、菱形的判定、平移的性质,证明四边形ABED是平行四边形是解题的关键.
    变式2-5.(2023·河南·统考中考真题)如图,将扇形AOB沿OB方向平移,使点O移到OB的中点处,得到扇形.若∠O=90°,OA=2,则阴影部分的面积为______.
    答案:
    分析:设与扇形交于点,连接,解,求得,根据阴影部分的面积为,即可求解.
    【详解】如图,设与扇形交于点,连接,如图
    是OB的中点
    , OA=2,
    =90°,将扇形AOB沿OB方向平移,
    阴影部分的面积为
    故答案为:
    【点睛】本题考查了解直角三角形,求扇形面积,平移的性质,求得是解题的关键.
    变式2-6.(2023·浙江台州·统考中考真题)如图,△ABC的边BC长为4cm.将△ABC平移2cm得到△A′B′C′,且BB′⊥BC,则阴影部分的面积为______.
    答案:8
    分析:根据平移的性质即可求解.
    【详解】解:由平移的性质S△A′B′C′=S△ABC,BC=B′C′,BC∥B′C′,
    ∴四边形B′C′CB为平行四边形,
    ∵BB′⊥BC,
    ∴四边形B′C′CB为矩形,
    ∵阴影部分的面积=S△A′B′C′+S矩形B′C′CB-S△ABC
    =S矩形B′C′CB
    =4×2
    =8(cm2).
    故答案为:8.
    【点睛】本题考查了矩形的判定和平移的性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.
    变式2-7.(2023·浙江金华·统考中考真题)如图,在中,.把沿方向平移,得到,连结,则四边形的周长为_____.
    答案:
    分析:通过勾股定理,平移的特性,特殊角的三角函数,分别计算出四边形的四条边长,再计算出周长即可.
    【详解】解:∵,
    ∴AB=2BC=4,
    ∴AC=,
    ∵把沿方向平移,得到,
    ∴,, ,
    ∴四边形的周长为:,
    故答案为:.
    【点睛】本题考查勾股定理,平移的特性,特殊角的三角函数,能够熟练掌握勾股定理是解决本题的关键.
    考查题型三 平移(作图)
    典例3.(2023·陕西·统考中考真题)如图,的顶点坐标分别为.将平移后得到,且点A的对应点是,点B、C的对应点分别是.
    (1)点A、之间的距离是__________;
    (2)请在图中画出.
    答案:(1)4
    (2)见解析
    分析:(1)由得,A、之间的距离是2-(-2)=4;
    (2)根据题意找出平移规律,求出,进而画图即可.
    【详解】(1)解:由得,
    A、之间的距离是2-(-2)=4.
    故答案为:4.
    (2)解:由题意,得,
    如图,即为所求.
    【点睛】本题考查了坐标系中两点之间的距离求解以及平移求点坐标画图,题目相对较简单,掌握平移规律是解决问题的关键.
    变式3-1.(2023·浙江温州·统考中考真题)如图,在的方格纸中,已知格点P,请按要求画格点图形(顶点均在格点上).
    (1)在图1中画一个锐角三角形,使P为其中一边的中点,再画出该三角形向右平移2个单位后的图形.
    (2)在图2中画一个以P为一个顶点的钝角三角形,使三边长都不相等,再画出该三角形绕点P旋转后的图形.
    答案:(1)见解析
    (2)见解析
    分析:(1)根据题意画出合适的图形即可,注意本题答案不唯一,主要作出的图形符合题意即可;
    (2)根据题意画出合适的图形即可,注意本题答案不唯一,主要作出的图形符合题意即可.
    【详解】(1)画法不唯一,如图1或图2等.
    (2)画法不唯一,如图3或图4等.
    【点睛】本题考查作图—旋转变换、作图—平移变换,解答本题的关键是明确题意,画出相应的图形,注意不要忘记画出平移后或旋转后的图形.
    考查题型四 平移的坐标变化规律
    典例4.(2023·山东日照·统考中考真题)在平面直角坐标系中,把点向右平移两个单位后,得到对应点的坐标是( )
    A.B.C.D.
    答案:D
    分析:根据平移时,点的坐标变化规律“左减右加”进行计算即可.
    【详解】解:根据题意,从点到点,点的纵坐标不变,横坐标是,
    故点的坐标是.
    故选:D.
    【点睛】此题考查了点的坐标变化和平移之间的联系,平移时点的坐标变化规律是“上加下减,左减右加”.
    变式4-1.(2023·辽宁大连·统考中考真题)如图,在平面直角坐标系中,点A的坐标是,将线段向右平移4个单位长度,得到线段,点A的对应点C的坐标是_______.
    答案:
    分析:由将线段向右平移4个单位长度,可得点A向右边平移了4个单位与C对应,再利用“右移加”即可得到答案.
    【详解】解:∵将线段向右平移4个单位长度,
    ∴点A向右边平移了4个单位与C对应,
    ∴ 即
    故答案为:
    【点睛】本题考查的是平移的坐标变化规律,熟记“右移加,左移减,上移加,下移减”是解本题的关键.
    变式4-2.(2023·山东淄博·统考中考真题)如图,在平面直角坐标系中,平移△ABC至△A1B1C1的位置.若顶点A(﹣3,4)的对应点是A1(2,5),则点B(﹣4,2)的对应点B1的坐标是________.
    答案:(1,3)
    分析:根据点A和点的坐标可得出平移规律,从而进一步可得出结论.
    【详解】解:∵顶点A(﹣3,4)的对应点是A1(2,5),

    ∴平移至的规律为:将向右平移5个单位,再向上平移1个单位即可得到
    ∵B(﹣4,2)
    ∴的坐标是(-4+5,2+1),即(1,3)
    故答案为:(1,3)
    【点睛】本题主要考查了坐标与图形,正确找出平移规律是解答本题的关键.
    变式4-3.(2023·山东淄博·统考中考真题)在平面直角坐标系中,点关于轴的对称点为,将点向左平移3个单位得到点,则的坐标为__________.
    答案:
    分析:先由点的坐标关于坐标轴对称的方法得出点的坐标,然后再根据点的平移可进行求解.
    【详解】解:由点关于轴的对称点为可得:,
    ∴将点向左平移3个单位得到点,则的坐标为;
    故答案为.
    【点睛】本题主要考查点的坐标平移及对称,熟练掌握点的坐标平移及对称是解题的关键.
    变式4-4.(2023·湖北·统考中考真题)如图,在平面直角坐标系中,动点P从原点O出发,水平向左平移1个单位长度,再竖直向下平移1个单位长度得到点;接着水平向右平移2个单位长度,再竖直向上平移2个单位长度得到点;接着水平向左平移3个单位长度,再竖直向下平移3个单位长度得到点;接着水平向右平移4个单位长度,再竖直向上平移4个单位长度得到点,…,按此作法进行下去,则点的坐标为___________.
    答案:
    分析:先根据点坐标的平移变换规律求出点的坐标,再归纳类推出一般规律即可得.
    【详解】解:由题意得:,即,
    ,即,
    ,即,
    ,即,
    观察可知,点的坐标为,其中,
    点的坐标为,其中,
    点的坐标为,其中,
    归纳类推得:点的坐标为,其中为正整数,

    点的坐标为,
    故答案为:.
    【点睛】本题考查了点坐标的平移变换规律、点坐标的规律探索,正确归纳类推出一般规律是解题关键.
    考查题型五 利用旋转的性质求解
    典例5.(2023·内蒙古包头·中考真题)如图,在中,,将绕点C顺时针旋转得到,其中点与点A是对应点,点与点B是对应点.若点恰好落在边上,则点A到直线的距离等于( )
    A.B.C.3D.2
    答案:C
    分析:如图,过作于 求解 结合旋转:证明∠B=∠A'B'C=60°,BC=B'C,∠A'CB'=90°, 可得为等边三角形,求解∠A'CA=60°, 再应用锐角三角函数可得答案.
    【详解】解:如图,过作于
    由,

    结合旋转:
    ∴∠B=∠A'B'C=60°,BC=B'C,∠A'CB'=90°,
    ∴△BB'C为等边三角形,
    ∴∠BCB'=60°,∠ACB'=30°,
    ∴∠A'CA=60°,
    ∴AQ=ACsin60°=23×32=3.
    ∴A到的距离为3.
    故选C
    【点睛】本题考查的是旋转的性质,含的直角三角形的性质,勾股定理的应用,等边三角形的判定与性质,锐角三角函数的应用,作出适当的辅助线构建直角三角形是解本题的关键.
    变式5-1.(2023·宁夏·中考真题)如图,直线,的边在直线上,,将绕点顺时针旋转至,边交直线于点,则______.
    答案:50
    分析:先根据旋转的性质得到,再由平角的定义求出的度数,即可利用平行线的性质得到答案.
    【详解】解:将绕点顺时针旋转至,
    ∴,
    ∵∠AOB=55°,
    ∴,


    故答案为:.
    【点睛】本题主要考查了旋转的性质,平行线的性质,熟练掌握两直线平行,同位角相等和旋转的性质是解题的关键.
    变式5-2.(2023·辽宁阜新·统考中考真题)如图,在中,,,将绕点逆时针旋转,得到,则点到的距离是______.
    答案:2
    分析:由旋转的性质可得,,可证是等边三角形,由直角三角形的性质可求解.
    【详解】解:如图,连接,过点作于,

    将绕点逆时针旋转,
    ,,
    是等边三角形,
    ,,



    点到的距离是,
    故答案为:.
    【点睛】本题考查了旋转的性质,等边三角形的判定和性质,直角三角形的性质,掌握旋转的性质是解题的关键.
    变式5-3.(2023·青海·统考中考真题)如图所示的图案由三个叶片组成,绕点O旋转120°后可以和自身重合,若每个叶片的面积为4cm2,∠AOB=120°,则图中阴影部分的面积为__________.
    答案:4 cm2
    分析:根据旋转的性质和图形的特点解答.
    【详解】每个叶片的面积为4cm2,因而图形的面积是12cm2.
    ∵图案绕点O旋转120°后可以和自身重合,∠AOB为120°,∴图形中阴影部分的面积是图形的面积的,因而图中阴影部分的面积之和为4cm2.
    故答案为4cm2.
    【点睛】本题考查了图形的旋转与重合,理解旋转对称图形的定义是解决本题的关键.注:旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.
    变式5-4.(2023·山东济南·统考中考真题)如图1,△ABC是等边三角形,点D在△ABC的内部,连接AD,将线段AD绕点A按逆时针方向旋转60°,得到线段AE,连接BD,DE,CE.
    (1)判断线段BD与CE的数量关系并给出证明;
    (2)延长ED交直线BC于点F.
    ①如图2,当点F与点B重合时,直接用等式表示线段AE,BE和CE的数量关系为_______;
    ②如图3,当点F为线段BC中点,且ED=EC时,猜想∠BAD的度数,并说明理由.
    答案:(1),理由见解析
    (2)①;②,理由见解析
    分析:(1)利用等边三角形的性质和旋转的性质易得到,再由全等三角形的性质求解;
    (2)①根据线段绕点A按逆时针方向旋转得到得到是等边三角形,
    由等边三角形的性质和(1)的结论来求解;②过点A作于点G,连接AF,根据等边三角形的性质和锐角三角函数求值得到,,进而得到,进而求出,结合,ED=EC得到,再用等腰直角三角形的性质求解.
    (1)
    解:.
    证明:∵是等边三角形,
    ∴,.
    ∵线段绕点A按逆时针方向旋转得到,
    ∴,,
    ∴,
    ∴,
    即.
    在和中

    ∴,
    ∴;
    (2)
    解:①
    理由:∵线段绕点A按逆时针方向旋转得到,
    ∴是等边三角形,
    ∴,
    由(1)得,
    ∴;
    ②过点A作于点G,连接AF,如下图.
    ∵是等边三角形,,
    ∴,
    ∴.
    ∵是等边三角形,点F为线段BC中点,
    ∴,,,
    ∴,
    ∴,,
    ∴,
    即,
    ∴,
    ∴.
    ∵,,
    ∴,
    即是等腰直角三角形,
    ∴.
    【点睛】本题主要考查了等边三角形的性质,旋转的性质,全等三角形的判定和性质,解直角三角形,相似三角形的判定和性质,等腰直角三角形的判定和性质,理解相关知识是解答关键.
    变式5-5.(2023·辽宁抚顺·统考中考真题)在中,,线段绕点A逆时针旋转至(不与重合),旋转角记为,的平分线与射线相交于点E,连接.
    (1)如图①,当时,的度数是_____________;
    (2)如图②,当时,求证:;
    (3)当时,请直接写出的值.
    答案:(1)
    (2)见解析
    (3)或
    分析:(1)根据旋转的性质可知,当时可根据等腰三角形的性质计算的角度,再由,是的平分线可知,由三角形外角的性质,通过即可得出答案;
    (2)延长到F,使,连接,先证明,可推导、、,再由已知条件及等腰三角形的性质推导,然后证明,推导,在中,由三角函数可计算,即可证明;
    (3)分两种情况讨论:①当时,借助(2)可知,再求的值即可;②当时,在线段BD上取点F,使得,结合(2)中,可知、,易证明,可推导、、, ,在中,由三角函数可计算,即可推导,再求的值即可.
    【详解】(1)解:由旋转可知,,当时,
    可知,
    ∵,是的平分线,
    ∴,
    ∴.
    故答案为:;
    (2)证明:延长到F,使,连接.
    ∵,,
    ∴,
    ∵平分,
    ∴,
    ∵,
    ∴,
    ∴,,,
    ∵,
    ∴,
    ∵,
    ∴,
    ∵,
    ∴,

    ∴,
    ∵,,
    ∴,
    ∵,,
    ∴,
    ∴,,
    ∴,
    在中,,
    ∵,
    ∴,
    ∵,
    ∴;
    (3)①当时,由(2)可知,
    ,,
    ∴,
    当时,可知,
    ∴;
    ②当时,如下图,在线段BD上取点F,使得,
    由(2)可知,,
    ∴,,
    ∵,
    ∴,
    ∴,
    ∵,
    ∴,
    ∴,,
    ∴,
    ∴,
    在中,,
    ∴,
    ∴,
    当时,可知,
    ∴.
    综上所述,当时, 或.
    【点睛】本题主要考查了旋转的性质、全等三角形的判定与性质、等腰三角形的性质及三角函数解直角三角形的知识,解题关键是熟练掌握相关性质,并通过作辅助线构建全等三角形.
    变式5-6.(2023·山西·中考真题)综合与实践
    问题情境:在Rt△ABC中,∠BAC=90°,AB=6,AC=8.直角三角板EDF中∠EDF=90°,将三角板的直角顶点D放在Rt△ABC斜边BC的中点处,并将三角板绕点D旋转,三角板的两边DE,DF分别与边AB,AC交于点M,N,猜想证明:
    (1)如图①,在三角板旋转过程中,当点M为边AB的中点时,试判断四边形AMDN的形状,并说明理由;
    问题解决:
    (2)如图②,在三角板旋转过程中,当时,求线段CN的长;
    (3)如图③,在三角板旋转过程中,当AM=AN时,直接写出线段AN的长.
    答案:(1)四边形AMDN为矩形;理由见解析;(2);(3).
    分析:(1)由三角形中位线定理得到,证明∠A=∠AMD=∠MDN=90°,即可证明结论;
    (2)证明△NDC是等腰三角形,过点N作NG⊥BC于点G,证明△CGN∽△CAB,利用相似三角形的性质即可求解;
    (3)延长ND,使DH=DN,证明△BDH≌△CDN,推出BH=CN,∠DBH=∠C,证明∠MBH=90°,设AM=AN=x,在Rt△BMH中,利用勾股定理列方程,解方程即可求解.
    【详解】解:(1)四边形AMDN为矩形.
    理由如下:∵点M为AB的中点,点D为BC的中点,
    ∴,
    ∴∠AMD+∠A=180°,
    ∵∠A=90°,
    ∴∠AMD=90°,
    ∵∠EDF=90°,
    ∴∠A=∠AMD=∠MDN=90°,
    四边形AMDN为矩形;
    (2)在Rt△ABC中,∠A=90°,AB=6,AC=8,
    ∴∠B+∠C=90°,.
    ∵点D是BC的中点,
    ∴CD=BC=5.
    ∵∠EDF=90°,
    ∴∠MDB+∠1=90°.
    ∵∠B=∠MDB,
    ∴∠1=∠C.
    ∴ND=NC.
    过点N作NG⊥BC于点G,则∠CGN=90°.
    ∴CG=CD=.
    ∵∠C=∠C,∠CGN=∠CAB=90°,
    ∴△CGN∽△CAB.
    ∴,即,
    ∴;
    (3)延长ND至H,使DH=DN,连接MH,NM,BH,
    ∵MD⊥HN,∴MN=MH,
    ∵D是BC中点,
    ∴BD=DC,
    又∵∠BDH=∠CDN,
    ∴△BDH≌△CDN,
    ∴BH=CN,∠DBH=∠C,
    ∵∠BAC=90°,
    ∵∠C+∠ABC=90°,
    ∴∠DBH+∠ABC=90°,
    ∴∠MBH=90°,
    设AM=AN=x,则BM=6-x,BH=CN=8-x,MN=MH=x,
    在Rt△BMH中,BM2+BH2=MH2,
    ∴(6-x)2+(8-x)2=(x)2,
    解得x=,
    ∴线段AN的长为.
    【点睛】本题考查了全等三角形的判定和性质,相似三角形的判定和性质,矩形的判定,勾股定理,解第(3)问的关键是学会利用参数构建方程解决问题.
    变式5-7.(2023·贵州黔西·中考真题)如图1,D为等边△ABC内一点,将线段AD绕点A逆时针旋转60°得到AE,连接CE,BD的延长线与AC交于点G,与CE交于点F.
    (1)求证:BD=CE;
    (2)如图2,连接FA,小颖对该图形进行探究,得出结论:∠BFC=∠AFB=∠AFE.小颖的结论是否正确?若正确,请给出证明;若不正确,请说明理由.
    答案:(1)见解析;(3)正确,见解析
    分析:(1)根据旋转的性质可得AD=AE,∠DAE=60°,结合已知条件可得∠BAC=∠DAE,进而证明△ABD≌△ACE,即可证明BD=CE;
    (2)过A作BD,CF的垂线段分别交于点M,N,△ABD≌△ACE,BD=CE,由面积相等可得AM=AN,证明Rt△AFM≌Rt△AFN,进而证明∠BFC=∠AFB=∠AFE=60°
    【详解】解:证明:(1)如图1,∵线段AD绕点A逆时针旋转60°得到AE,
    ∴AD=AE,∠DAE=60°,
    ∵∠BAC=60°,
    ∴∠BAC=∠DAE,
    ∴∠BAD=∠CAE,
    在△ABD和△ACE中,

    ∴△ABD≌△ACE(SAS),
    ∴BD=CE,
    (2)由(1)可知△ABD≌△ACE
    则∠ABD=∠ACE,
    又∵∠AGB=∠CGF,
    ∴∠BFC=∠BAC=60°,
    ∴∠BFE=120°,
    过A作BD,CF的垂线段分别交于点M,N,
    又∵△ABD≌△ACE,BD=CE,
    ∴由面积相等可得AM=AN,
    在Rt△AFM和Rt△AFN中,

    ∴Rt△AFM≌Rt△AFN(HL),
    ∴∠AFM=∠AFN,
    ∴∠BFC=∠AFB=∠AFE=60°.
    【点睛】本题考查了三角形全等的性质与判定,旋转的性质,正确的添加辅助线找到全等三角形并证明是解题的关键.
    变式5-8.(2023·湖南株洲·统考中考真题)将一物体(视为边长为米的正方形)从地面上挪到货车车厢内.如图所示,刚开始点与斜面上的点重合,先将该物体绕点按逆时针方向旋转至正方形的位置,再将其沿方向平移至正方形的位置(此时点与点重合),最后将物体移到车厢平台面上.已知,,过点作于点,米,米.
    (1)求线段的长度;
    (2)求在此过程中点运动至点所经过的路程.
    答案:(1)米;(2)4米.
    分析:(1)利用直角三角形FGH即可求解;
    (2)连接A1A2,则必过点D1,分别求出A1A2和的长,即可求出点A经过的路程.
    【详解】解:(1)∵MG∥PQ,
    ∴∠FGM=∠FBP=30°.
    ∴在中,
    (米).
    (2)连接A1A2,则必过点D1,且四边形A1BGA2是矩形.
    ∴A1A2=BG=BF-GF=(米).
    ∵四边形ABCD和四边形A1BC1D1都是正方形,
    ∴AB=A1B,∠A1BC1=∠ABC=90°.
    ∴∠ABA1=180°-∠A1BC1-∠FBP=180°-90°-30°=60°.
    ∴(米).
    ∴在整个运动过程中,点A运动至A2的路程为:
    (米).
    【点睛】本题考查了直角三角形的性质、矩形和正方形的性质、平移和旋转的性质等知识点,熟知旋转和平移的性质是解题的关键.
    考查题型六 旋转(作图)
    典例6.(2023·湖南·统考中考真题)如图所示的方格纸格长为一个单位长度)中,的顶点坐标分别为,,.
    (1)将沿轴向左平移5个单位,画出平移后的△(不写作法,但要标出顶点字母);
    (2)将绕点顺时针旋转,画出旋转后的△(不写作法,但要标出顶点字母);
    (3)在(2)的条件下,求点绕点旋转到点所经过的路径长(结果保留.
    答案:(1)见解析
    (2)见解析
    (3)
    分析:(1)利用平移变换的性质分别作出, ,的对应点,,即可;
    (2)利用旋转变换的性质分别作出, ,的对应点,,即可;
    (3)利用弧长公式求解即可.
    (1)
    解:如图,即为所求;
    (2)
    解:如图,(即△A2OB2)即为所求;
    (3)
    解:在中,,

    【点睛】本题考查作图旋转变换,平移变换,勾股定理、弧长公式等知识,解题的关键是掌握平移变换,旋转变换的性质.
    变式6-1.(2023·辽宁阜新·中考真题)如图,在平面直角坐标系中,顶点的坐标分别为,,.
    (1)画出与关于y轴对称的;
    (2)将绕点顺时针旋转90°得到,弧是点A所经过的路径,则旋转中心的坐标为___________.
    (3)求图中阴影部分的面积(结果保留).
    答案:(1)见解析;(2);(3)
    分析:(1)根据网格结构找出点C关于y轴的对称点A1、B1、C1的位置,然后顺次连接即可;
    (2)利用网格特点和性质的性质,作AA2和CC2的垂直平分线,它们的交点即为点;
    (3)结合图形的特征,利用勾股定理求出旋转半径,利用扇形面积和三角形面积求出阴影部分的面积.
    【详解】(1)如图所示,△A1B1C1即为所求.
    (2)如图所示,旋转中心的坐标为

    (3)如图:设旋转半径为r,则,
    ∴阴影部分的图形面积为:
    【点晴】本题考查了利用轴对称变换作图,利用旋转变换作图,以及阴影部分面积的计算.熟练掌握网格结构、勾股定理、图形变换的性质及图形面积公式是解题的关键.
    变式6-2.(2023·湖北武汉·中考真题)在的网格中建立如图的平面直角坐标系,四边形的顶点坐标分别为,,,.仅用无刻度的直尺在给定网格中按下列步骤完成画图,并回答问题:
    (1)将线段绕点逆时针旋转,画出对应线段;
    (2)在线段上画点,使(保留画图过程的痕迹);
    (3)连接,画点关于直线的对称点,并简要说明画法.
    答案:(1)见解析;(2)见解析;(3)见解析
    分析:(1)根据题意,将线段是将线段绕点逆时针旋转即可;
    (2)连接BD,并连接(4,2),(5,5)点,两线段的交点即为所求的点E.
    (3)连接(5,0)和(0,5)点,与AC的交点为F,且F为所求.
    【详解】解:(1)如图示,线段是将线段绕点逆时针旋转得到的;
    (2)∠BCE为所求的角,点E为所求的点.
    (3)连接(5,0)和(0,5)点,与AC的交点为F,且F为所求.
    【点睛】本题考查了作图-旋转变换,正方形的性质,全等三角形的性质和轴对称的性质,熟悉相关性质是解题的关键.
    考查题型七 旋转的坐标变化规律
    典例7.(2023·山东青岛·统考中考真题)如图,将先向右平移3个单位,再绕原点O旋转,得到,则点A的对应点的坐标是( )
    A.B.C.D.
    答案:C
    分析:先画出平移后的图形,再利用旋转的性质画出旋转后的图形即可求解.
    【详解】解:先画出△ABC平移后的△DEF,再利用旋转得到△A'B'C',
    由图像可知A'(-1,-3),
    故选:C.
    【点睛】本题考查了图形的平移和旋转,解题关键是掌握绕原点旋转的图形的坐标特点,即对应点的横纵坐标都互为相反数.
    变式7-1.(2023·黑龙江绥化·统考中考真题)如图,线段在平面直角坐标系内,A点坐标为,线段绕原点O逆时针旋转90°,得到线段,则点的坐标为( )
    A.B.C.D.
    答案:A
    分析:如图,逆时针旋转90°作出,过A作轴,垂足为B,过作轴,垂足为,证明,根据A点坐标为,写出,,则,,即可写出点A的坐标.
    【详解】解:如图,逆时针旋转90°作出,过A作轴,垂足为B,过作轴,垂足为,
    ∴,,
    ∵,,
    ∴,
    ∴,
    ∴,,
    ∵A点坐标为,
    ∴,,
    ∴,,
    ∴,
    故选:A.
    【点睛】本题考查旋转的性质,证明是解答本题的关键.
    变式7-2.(2023·河南·统考中考真题)如图,在平面直角坐标系中,边长为2的正六边形ABCDEF的中心与原点O重合,轴,交y轴于点P.将△OAP绕点O顺时针旋转,每次旋转90°,则第2022次旋转结束时,点A的坐标为( )
    A.B.C.D.
    答案:B
    分析:首先确定点A的坐标,再根据4次一个循环,推出经过第2022次旋转后,点A的坐标即可.
    【详解】解:正六边形ABCDEF边长为2,中心与原点O重合,轴,
    ∴AP=1, AO=2,∠OPA=90°,
    ∴OP==,
    ∴A(1,),
    第1次旋转结束时,点A的坐标为(,-1);
    第2次旋转结束时,点A的坐标为(-1,);
    第3次旋转结束时,点A的坐标为(,1);
    第4次旋转结束时,点A的坐标为(1,);
    ∵将△OAP绕点O顺时针旋转,每次旋转90°,
    ∴4次一个循环,
    ∵2022÷4=505……2,
    ∴经过第2022次旋转后,点A的坐标为(-1,),
    故选:B
    【点睛】本题考查正多边形与圆,规律型问题,坐标与图形变化﹣旋转等知识,解题的关键是学会探究规律的方法,属于中考常考题型.
    变式7-3.(2023·四川内江·统考中考真题)如图,在平面直角坐标系中,点B、C、E在y轴上,Rt△ABC 经过变换得到Rt△ODE,若点C的坐标为(0,1),AC=2,则这种变换可以是( )
    A.△ABC绕点C顺时针旋转90°,再向下平移3
    B.△ABC绕点C顺时针旋转90°,再向下平移1
    C.△ABC绕点C逆时针旋转90°,再向下平移1
    D.△ABC绕点C逆时针旋转90°,再向下平移3
    答案:A
    【详解】根据图形可以看出,△ABC绕点C顺时针旋转90°,再向下平移3个单位可以得到△ODE.
    故选A.
    【点睛】本题考查坐标与图形变化-旋转,坐标与图形变化-平移.掌握旋转和平移的性质是解题关键.
    变式7-4.(2023·贵州安顺·统考中考真题)如图,在平面直角坐标系中,将边长为2的正六边形绕点顺时针旋转个,得到正六边形,当时,正六边形的顶点的坐标是( )
    A.B.C.D.
    答案:A
    分析:由于正六边形每次转45°,根据,则的坐标与的坐标相同,求得的坐标即可求解.
    【详解】解:将边长为2的正六边形绕点顺时针旋转个,
    当时,
    则的坐标与的坐标相同,

    如图,过点作于,过点轴于点,
    ,,


    正六边形的一个外角,







    故选A.
    【点睛】本题考查了旋转的性质,解直角三角形,正六边形的性质,正多边形的外角和,内角和,求得的位置是解题的关键.
    变式7-5.(2023·黑龙江牡丹江·统考中考真题)如图,△AOB中,OA=4,OB=6,AB=2,将△AOB绕原点O旋转90°,则旋转后点A的对应点A′的坐标是( )
    A.(4,2)或(﹣4,2)B.(2,﹣4)或(﹣2,4)
    C.(﹣2,2)或(2,﹣2)D.(2,﹣2)或(﹣2,2)
    答案:C
    分析:先求出点A的坐标,再根据旋转变换中,坐标的变换特征求解;或根据题意画出图形旋转后的位置,根据旋转的性质确定对应点A′的坐标.
    【详解】过点A作于点C.
    在Rt△AOC中, .
    在Rt△ABC中, .
    ∴ .
    ∵OA=4,OB=6,AB=2,
    ∴.
    ∴.
    ∴点A的坐标是.
    根据题意画出图形旋转后的位置,如图,
    ∴将△AOB绕原点O顺时针旋转90°时,点A的对应点A′的坐标为;
    将△AOB绕原点O逆时针旋转90°时,点A的对应点A′′的坐标为.
    故选:C.
    【点睛】本题考查了解直角三角形、旋转中点的坐标变换特征及旋转的性质.(a,b)绕原点顺时针旋转90°得到的坐标为(b,-a),绕原点逆时针旋转90°得到的坐标为(-b,a).
    变式7-6.(2023·四川达州·统考中考真题)在平面直角坐标系中,等边如图放置,点的坐标为,每一次将绕着点逆时针方向旋转,同时每边扩大为原来的2倍,第一次旋转后得到,第二次旋转后得到,…,依次类推,则点的坐标为( )
    A.B.
    C.D.
    答案:C
    分析:由题意,点A每6次绕原点循环一周,利用每边扩大为原来的2倍即可解决问题.
    【详解】解:由题意,点A每6次绕原点循环一周,

    点在第四象限,, ,
    点的横坐标为,纵坐标为,

    故选:C.
    【点睛】本题考查坐标与图形变化旋转,规律型问题,解题的关键是理解题意,学会探究规律的方法,属于中考常考题型.
    变式7-7.(2023·山东淄博·统考中考真题)如图,正方形ABCD的中心与坐标原点O重合,将顶点D(1,0)绕点A(0,1)逆时针旋转90°得点D1,再将D1绕点B逆时针旋转90°得点D2,再将D2绕点C逆时针旋转90°得点D3,再将D3绕点D逆时针旋转90°得点D4,再将D4绕点A逆时针旋转90°得点D5……依此类推,则点D2022的坐标是________.
    答案:(-2023,2022)
    分析:由题意观察发现:每四个点一个循环,,由,推出.
    【详解】解:将顶点绕点逆时针旋转得点,

    再将绕点逆时针旋转得点,再将绕点逆时针旋转得点,再将绕点逆时针旋转得点,再将绕点逆时针旋转得点
    ,,,,,,
    观察发现:每四个点一个循环,,


    故答案为:.
    【点睛】本题考查坐标与图形的变化旋转,等腰直角三角形性质,规律型问题,解题的关键是学会探究规律的方法,找到规律再利用规律求解.
    考查题型八 旋转综合题(与线段有关)
    典例8.(2023·广西柳州·统考中考真题)如图,在正方形ABCD中,AB=4,G是BC的中点,点E是正方形内一个动点,且EG=2,连接DE,将线段DE绕点D逆时针旋转90°得到线段DF,连接CF,则线段CF长的最小值为 _____.
    答案:
    分析:如图,由EG=2,确定在以G为圆心,半径为2的圆上运动,连接AE, 再证明(SAS), 可得可得当三点共线时,最短,则最短,再利用勾股定理可得答案.
    【详解】解:如图,由EG=2,可得在以G为圆心,半径为2的圆上运动,连接AE,
    ∵正方形ABCD,
    ∴AD=CD,∠ADC=90°,
    ∴∠ADC=∠EDF=90°,
    ∴∠ADE=∠CDF,
    ∵DE=DF,
    ∴(SAS),

    ∴当三点共线时,最短,则最短,
    ∵位BC 中点,

    此时
    此时
    所以CF的最小值为:
    故答案为:
    【点睛】本题考查的是正方形的性质,圆的基本性质,勾股定理的应用,二次根式的化简,熟练的利用圆的基本性质求解线段的最小值是解本题的关键.
    变式8-1.(2023·辽宁盘锦·中考真题)如图,四边形ABCD是正方形,△ECF为等腰直角三角形,∠ECF=90°,点E在BC上,点F在CD上,P为EF中点,连接AF,G为AF中点,连接PG,DG,将Rt△ECF绕点C顺时针旋转,旋转角为α(0°≤α≤360°).
    (1)如图1,当α=0°时,DG与PG的关系为 ;
    (2)如图2,当α=90°时
    ①求证:△AGD≌△FGM;
    ②(1)中的结论是否成立?若成立,请写出证明过程;若不成立,请说明理由.
    答案:(1)且
    (2)①见解析;②成立,理由见解析
    分析:(1)先判断出,得出,,再用直角三角形斜边的中线等于斜边的一半和三角形中位线定理、三角形外角和定理,即可得出结论;
    (2)①先判断出,再判断出,即可得出结论;
    ②由①知,,得,得出,根据题(1),得出,得,得.又根据点是的中点,是的中位线,等量代换得.根据得,且,推出,又根据,同旁内角互补,得,即.
    (1)
    解:∵四边形ABCD是正方形
    ∴,
    ∵为等腰直角三角形

    ∴CE=CF,

    ∴,
    ∵点是的中点


    ∵为中点,为中点
    ∴是的中位线
    ∴,
    ∴,
    又∵在中
    ∴且






    故且.
    故答案是:DG=PG且DG⊥GP;
    (2)
    ①证明:∵四边形是正方形,

    ∵点是的中点

    ∴在和中

    解:②(1)中的结论且成立
    证明:由①知,
    ∴,




    又∵,

    ∴,
    ∵点是的中点

    又∵为中点,为中点
    ∴是的中位线
    ∴,

    又∵



    又∵



    故且.
    【点睛】此题是四边形综合题,主要考查了正方形的性质,全等三角形的判定和性质,等腰直角三角形的性质,三角形的中位线定理,解题的关键是全等三角形性质,三角形中位线定理,等量代换的转换运用.
    变式8-2.(2023·江苏南通·统考中考真题)如图,矩形中,,点E在折线上运动,将绕点A顺时针旋转得到,旋转角等于,连接.
    (1)当点E在上时,作,垂足为M,求证;
    (2)当时,求的长;
    (3)连接,点E从点B运动到点D的过程中,试探究的最小值.
    答案:(1)见详解
    (2)或
    (3)
    分析:(1)证明即可得证.
    (2)分情况讨论,当点E在BC上时,借助,在中求解;当点E在CD上时,过点E作EG⊥AB于点G,FH⊥AC于点H,借助并利用勾股定理求解即可.
    (3)分别讨论当点E在BC和CD上时,点F所在位置不同,DF的最小值也不同,综合比较取最小即可.
    (1)
    如图所示,
    由题意可知,,,

    由旋转性质知:AE=AF,
    在和中,



    (2)
    当点E在BC上时,
    在中,,,
    则,
    在中,,,
    则,
    由(1)可得,,
    在中,,,
    则,
    当点E在CD上时,如图,
    过点E作EG⊥AB于点G,FH⊥AC于点H,
    同(1)可得,

    由勾股定理得;
    故CF的长为或.
    (3)
    如图1所示,当点E在BC边上时,过点D作于点H,
    由(1)知,,
    故点F在射线MF上运动,且点F与点H重合时,DH的值最小.
    在与中,



    即,
    ,,

    在与中,



    即,

    故的最小值;
    如图2所示,当点E在线段CD上时,将线段AD绕点A顺时针旋转的度数,得到线段AR,连接FR,过点D作,,
    由题意可知,,
    在与中,



    故点F在RF上运动,当点F与点K重合时,DF的值最小;
    由于,,,
    故四边形DQRK是矩形;




    故此时DF的最小值为;
    由于,故DF的最小值为.
    【点睛】本题考查矩形的性质、全等三角形的判定和性质、相似三角形的性质和判定、勾股定理、解直角三角形,解决本题的关键是各性质定理的综合应用.
    考查题型九 旋转综合题(与面积有关)
    典例9.(2023·宁夏·中考真题)综合与实践
    知识再现
    如图,中,,分别以、、为边向外作的正方形的面积为、、.当,时,______.
    问题探究
    如图,中,.
    (1)如图,分别以、、为边向外作的等腰直角三角形的面积为、、,则、、之间的数量关系是______.
    (2)如图,分别以、、为边向外作的等边三角形的面积为、、,试猜想、、之间的数量关系,并说明理由.
    实践应用
    (1)如图,将图中的绕点逆时针旋转一定角度至,绕点顺时针旋转一定角度至,、相交于点.求证:;
    (2)如图,分别以图中的边、、为直径向外作半圆,再以所得图形为底面作柱体,、、为直径的半圆柱的体积分别为、、.若,柱体的高,直接写出的值.
    答案:知识再现 ;
    问题探究:(1);(2);理由见解析;
    实践应用:(1)见解析;(2).
    分析:知识再现:利用勾股定理和正方形的面积公式可求解;
    问题探究:(1)利用勾股定理和直角三角形的面积公式可求解;
    (2)过点D作DG⊥BC交于G,分别求出,,,由勾股定理可得,即可求S4+S5=S6;
    实践应用:(1)设AB=c,BC=a,AC=b,则HN=a+b-c,FG=c-a,MF=c-b,可证明△HNP是等边三角形,四边形MFGP是平行四边形,则,,再由,可证明.
    (2)设AB=c,BC=a,AC=b,以AB为直径的圆的面积为S3、以BC为直径的圆的面积为S1、以AC为直径的圆的面积为S2,可得S1+S2=S3,又由,即可求.
    【详解】知识再现:解:中,,


    ,,

    故答案为:;
    问题探究:解:中,,



    故答案为:;
    解:中,,

    过点作交于,
    在等边三角形中,,,


    同理可得,,


    实践应用:证明:设,,,
    ,,,
    是等边三角形,是等边三角形,
    ,,

    是等边三角形,四边形是平行四边形,
    ,,
    是直角三角形,



    解:设,,,以为直径的圆的面积为、以为直径的圆的面积为、以为直径的圆的面积为,
    是直角三角形,



    ,,,

    ,,


    【点睛】本题考查四边形的综合应用,熟练掌握直角三角形的勾股定理,等边三角形的性质,圆的性质,圆柱的体积,平行线的性质是解题的关键.
    变式9-1.(2023·江西·统考中考真题)问题提出:某兴趣小组在一次综合与实践活动中提出这样一个问题:将足够大的直角三角板的一个顶点放在正方形中心O处,并绕点O逆时针旋转,探究直角三角板与正方形重叠部分的面积变化情况(已知正方形边长为2).
    (1)操作发现:如图1,若将三角板的顶点P放在点O处,在旋转过程中,当与重合时,重叠部分的面积为__________;当与垂直时,重叠部分的面积为__________;一般地,若正方形面积为S,在旋转过程中,重叠部分的面积与S的关系为__________;
    (2)类比探究:若将三角板的顶点F放在点O处,在旋转过程中,分别与正方形的边相交于点M,N.
    ①如图2,当时,试判断重叠部分的形状,并说明理由;
    ②如图3,当时,求重叠部分四边形的面积(结果保留根号);
    (3)拓展应用:若将任意一个锐角的顶点放在正方形中心O处,该锐角记为(设),将绕点O逆时针旋转,在旋转过程中,的两边与正方形的边所围成的图形的面积为,请直接写出的最小值与最大值(分别用含的式子表示),
    (参考数据:)
    答案:(1)1,1,
    (2)①是等边三角形,理由见解析;②
    (3)
    分析:(1)如图1,若将三角板的顶点P放在点O处,在旋转过程中,当OF与OB重合时,OE与OC重合,此时重叠部分的面积=△OBC的面积=正方形ABCD的面积=1;当OF与BC垂直时,OE⊥BC,重叠部分的面积=正方形ABCD的面积=1;一般地,若正方形面积为S,在旋转过程中,重叠部分的面积S1与S的关系为S1=S.利用全等三角形的性质证明即可;
    (2)①结论:△OMN是等边三角形.证明OM=ON,可得结论;
    ②如图3中,连接OC,过点O作OJ⊥BC于点J.证明△OCM≌△OCN(SAS),推出∠COM=∠CON=30°,解直角三角形求出OJ,即可解决问题;
    (3)如图4-1中,过点O作OQ⊥BC于点Q,当BM=CN时,△OMN的面积最小,即S2最小.如图4-2中,当CM=CN时,S2最大.分别求解即可.
    (1)
    如图1,若将三角板的顶点P放在点O处,在旋转过程中,当OF与OB重合时,OE与OC重合,此时重叠部分的面积=△OBC的面积=正方形ABCD的面积=1;
    当OF与BC垂直时,OE⊥BC,重叠部分的面积=正方形ABCD的面积=1;
    一般地,若正方形面积为S,在旋转过程中,重叠部分的面积S1与S的关系为S1=S.
    理由:如图1中,设OF交AB于点J,OE交BC于点K,过点O作OM⊥AB于点M,ON⊥BC于点N.
    ∵O是正方形ABCD的中心,
    ∴OM=ON,
    ∵∠OMB=∠ONB=∠B=90°,
    ∴四边形OMBN是矩形,
    ∵OM=ON,
    ∴四边形OMBN是正方形,
    ∴∠MON=∠EOF=90°,
    ∴∠MOJ=∠NOK,
    ∵∠OMJ=∠ONK=90°,
    ∴△OMJ≌△ONK(AAS),
    ∴S△PMJ=S△ONK,
    ∴S四边形OKBJ=S正方形OMBN=S正方形ABCD,
    ∴S1=S.
    故答案为:1,1,S1=S.
    (2)
    ①如图2中,结论:△OMN是等边三角形.
    理由:过点O作OT⊥BC,
    ∵O是正方形ABCD的中心,
    ∴BT=CT,
    ∵BM=CN,
    ∴MT=TN,
    ∵OT⊥MN,
    ∴OM=ON,
    ∵∠MON=60°,
    ∴△MON是等边三角形;
    ②如图3中,连接OC,过点O作OJ⊥BC于点J.
    ∵CM=CN,∠OCM=∠OCN,OC=OC,
    ∴△OCM≌△OCN(SAS),
    ∴∠COM=∠CON=30°,
    ∴∠OMJ=∠COM+∠OCM=75°,
    ∵OJ⊥CB,
    ∴∠JOM=90°-75°=15°,
    ∵BJ=JC=OJ=1,
    ∴JM=OJ•tan15°=2-,
    ∴CM=CJ-MJ=1-(2-)=-1,
    ∴S四边形OMCN=2××CM×OJ=-1.
    (3)
    如图4,将沿翻折得到,则,此时则当在上时,比四边形的面积小,

    设,则当最大时,最小,
    ,即时,最大,
    此时垂直平分,即,则
    如图5中,过点O作OQ⊥BC于点Q,


    BM=CN
    当BM=CN时,△OMN的面积最小,即S2最小.
    在Rt△MOQ中,MQ=OQ•tan=tan,
    ∴MN=2MQ=2tan,
    ∴S2=S△OMN=×MN×OQ=tan.
    如图6中,同理可得,当CM=CN时,S2最大.

    则△COM≌△CON,
    ∴∠COM=,
    ∵∠COQ=45°,
    ∴∠MOQ=45°-,
    QM=OQ•tan(45°-)=tan(45°-),
    ∴MC=CQ-MQ=1-tan(45°-),
    ∴S2=2S△CMO=2××CM×OQ=1-tan(45°-).
    【点睛】本题属于四边形综合题,考查了正方形的性质,旋转变换,全等三角形的判定和性质,四边形的面积等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.
    联系
    变化后不改变图形的大小和形状,对应线段相等、对应角相等。
    区别
    变化方式
    不同
    平移:将一个图形沿某个方向移动一定距离。
    旋转:将一个图形绕一个顶点沿某个方向转一定角度。
    轴对称:将一个图形沿一条直线对折。
    对应线段、对应角之间的关系不同
    平移: 变化前后对应线段平行(或在一条直线上),对应点连线平行(或在一条直线上),对应角的两边平行(或在一条直线上)、方向一致。
    旋转: 变化前后任意一对对应点与旋转中心的连线所称的角都是旋转角。
    轴对称:对应线段或延长线如果相交,那么交点在对称轴上。
    确定条件
    不同
    平移:距离与方向
    旋转:旋转的三要素。
    轴对称:对称轴
    相关试卷

    中考数学一轮复习满分突破(全国通用)专题28圆(原卷版+解析): 这是一份中考数学一轮复习满分突破(全国通用)专题28圆(原卷版+解析),共65页。

    中考数学一轮复习满分突破(全国通用)专题26垂径定理(原卷版+解析): 这是一份中考数学一轮复习满分突破(全国通用)专题26垂径定理(原卷版+解析),共27页。

    中考数学一轮复习满分突破(全国通用)专题21勾股定理(原卷版+解析): 这是一份中考数学一轮复习满分突破(全国通用)专题21勾股定理(原卷版+解析),共38页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        中考数学一轮复习满分突破(全国通用)专题31平移与旋转(原卷版+解析)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map