开学活动
搜索
    上传资料 赚现金

    西北工业大学附属中学2023-2024学年八年级下学期期中考试数学试卷(含解析)

    西北工业大学附属中学2023-2024学年八年级下学期期中考试数学试卷(含解析)第1页
    西北工业大学附属中学2023-2024学年八年级下学期期中考试数学试卷(含解析)第2页
    西北工业大学附属中学2023-2024学年八年级下学期期中考试数学试卷(含解析)第3页
    还剩15页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    西北工业大学附属中学2023-2024学年八年级下学期期中考试数学试卷(含解析)

    展开

    这是一份西北工业大学附属中学2023-2024学年八年级下学期期中考试数学试卷(含解析),共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(共10小题,每小题3分,共30分,每小题只有一个选项是符合题意的)
    1. 下列图形中,是中心对称图形的是( ).
    A. B. C. D.
    答案:C
    解析:解:是中心对称图形的是:

    故选C.
    2. 在、、、、、中,分式的个数是( )
    A. 2B. 3C. 4D. 5
    答案:A
    解析:解:、、、的分母中均不含有字母,因此它们是整式,不是分式,
    、 的分母中含有字母,因此是分式,
    故分式的个数是,
    故选:A.
    3. 下列各式由左边到右边的变形中,是因式分解的是( )
    A. B.
    C. D.
    答案:B
    解析:解:A右边不是几个整式的积的形式,不是因式分解,故本选项不符合题意;
    B.是因式分解,故本选项符合题意;
    C.右边不是几个整式的积的形式,不是因式分解,故本选项不符合题意;
    D.右边不是几个整式的积的形式,不是因式分解,故本选项不符合题意;
    故选:B.
    4. 已知,则下列不等式一定成立的是( ).
    A. B.
    C. D.
    答案:D
    解析:解:A、由可得,原不等式不一定成立,不符合题意;
    B、由可得,进而可得,原不等式不一定成立,不符合题意;
    C、由可得,原不等式一定不成立,不符合题意;
    D、若可得,进而可得,原不等式成立,符合题意;
    故选:D.
    5. 不等式组的解集在数轴上表示正确的是( ).
    A. B. C. D.
    答案:B
    解析:解:,
    解不等式得:,
    解不等式得:,
    原不等式组的解集为:,
    把在数轴上表示为:
    故选B.
    6. 若分式的值为0,则x的值为( ).
    A. 0B. 1C. ﹣1D. ±1
    答案:B
    解析:解:∵分式的值为零,
    ∴,
    解得:x=1,
    故选B.
    7. 已知a,b,c分别是的三边长,若,则是( ).
    A. 等腰三角形B. 直角三角形C. 等边三角形D. 不能确定
    答案:A
    解析:解:∵,
    ∴,
    ∴,
    ∴,
    ∵a,b,c分别是的三边长,
    ∴,
    ∴,
    ∴,
    ∴是等腰三角形,
    故选:A.
    8. 如图,在中,分别以点A,B为圆心,以大于的线段长为半径画弧,两弧分别相交于两侧的M,N两点,直线交于点D,交于点E,连接,平分.若,,则的面积为( ).
    A. 7B. 8C. 14D. 28
    答案:C
    解析:解:过点作于,如图:
    由作图得:,
    平分,,



    故选C.
    9. 如图,直线与直线(k,b为常数,)相交于点,则关于x的不等式的解集为( ).
    A. B. C. D.
    答案:D
    解析:把代入得

    解得,
    由函数图象可知,当时,,
    故选:D.
    10. 如图,在锐角中,,将沿着射线方向平移得到(平移后点A,B,C的对应点分别是点,,),连接,若在整个平移过程中,和的度数之间存在2倍关系,则不可能的值为( ).
    A. B. C. D.
    答案:C
    解析:解:第一种情况:如图,当点在上时,过点作,

    ∵由平移得到,

    ∵,,


    当时,
    设,则,
    ∴,


    解得:,

    当时,
    设,则,
    ∴,


    解得:,

    第二种情况:当点在延长线上时,过点作,

    同理可得,
    当时,
    设,则,
    ∴,


    解得:,

    由于,则这种情况不存在;
    综上所述,的度数可以为18度或36度或108度,
    故选:C.
    二、填空题(共6小题,每小题3分,共18分)
    11. 若多项式能因式分解为的形式,则m的值为__________.
    答案:
    解析:解:∵能因式分解为的形式,
    ∴是一个完全平方式,
    ∴,
    ∴,
    故答案为:.
    12. 如图,小明用电脑制作了正方形的“丰”字卡片,正方形卡片的边长为10厘米,“丰”字每一笔的宽度都是1厘米,则卡片上剩余部分(空白区域)的面积是__________厘米2.
    答案:
    解析:解:根据平移的性质知,“丰”字每一笔的面积与长为厘米,宽为厘米的小长方形的面积相等,可将横着的三笔都平移到上方,竖着的一笔平移到左侧,
    则剩余部分(空白区域)的面积为平方厘米,
    故答案为:.
    13. 已知,,则的值为_____.
    答案:30
    解析:解:
    故答案为:30.
    14. 如图,将沿方向平移得到对应的,若,,则平移距离为__________cm.
    答案:1
    解析:解:∵将沿方向平移得到对应的,
    ∴,
    故答案为:.
    15. 如图,中,,,,将绕点B逆时针旋转得,若点在上,则的长为__________.
    答案:
    解析:解:将绕点逆时针旋转得,
    ,,,
    根据勾股定理得:



    在中,由勾股定理得:

    故答案为:.
    16. 如图,点P是矩形内部一点,若点P到A,B,C三点的距离之和的最小值为,,则这个矩形面积的最小值是__________.
    答案:
    解析:解:如图,将以为中心,顺时针旋转,得到,连接,,
    由旋转得,,,,
    是等边三角形,


    当,,,共线时,的值最小,即等于的值,

    过点作的垂线,交延长线于点,
    设,
    ,四边形是矩形,
    ,,
    ,,
    ,,




    解得,
    ,,

    故答案为:.
    三、解答题(共7小题,共52分.解答应写出过程)
    17. 因式分解:
    (1);
    (2)
    答案:(1)
    (2)
    小问1解析:
    解:原式

    小问2解析:
    原式

    18. 解不等式,并把它的解集表示在数轴上:.
    答案:,作图见解析
    解析:去分母,得:,
    去括号,得:,
    移项,合并同类项,得:,
    系数化1,得:;
    数轴表示解集如图:

    19. 先化简:,再从不等式组中选择一个适当的整数,代入求值.
    答案:,当时,原式
    解析:解:

    ∵分式要有意义,
    ∴,
    ∴且,
    当时,原式
    20. 如图,在平面直角坐标系中,的三个顶点都在格点(小正方形的顶点)上,每个小正方形的边长均为个单位长度.
    (1)画出关于原点对称的图形,并写出,的坐标;
    (2)求出的面积.
    答案:(1)画图见解析;点,;
    (2).
    小问1解析:
    作出、、关于关于原点对称的坐标特征写出、、,连接,,,

    如图,即为所求,点,;
    小问2解析:

    21. 阅读理解学习:
    将多项式分解因式得,说明多项式有一个因式为,还可知,当时.
    请你学习上述阅读材料解答以下问题:
    (1)若多项式有一个因式为,求k的值;
    (2)若,是多项式的两个因式,求a,b的值.
    答案:(1)
    (2)
    小问1解析:
    解:∵有一个因式为,
    ∴当时,,
    ∴当时,,
    ∴,
    ∴;
    小问2解析:
    解:∵,是多项式的两个因式,
    ∴当和时,,
    ∴和时,,
    ∴,
    ∴.
    22. 某文具商店购买了两种类型文具A和文具B销售,若购A文具3个,B文具4个,需要211元;若购进A文具5个,B文具2个,需要165元.
    (1)求文具A,文具B的进价分别是多少元?
    (2)若每个文具A的售价为25元,每个文具B的售价为45元.结合市场需求,该商店决定购进文具A和文具B共70个,且购进文具B的数量不少于文具A的数量的,若文具A和文具B全部销售完,求销售的最大利润及相应的进货方案.
    答案:(1)文具A,文具B的进价分别是17元、40元
    (2)当购进文具的数量是42个,则购进文具的数量是28个时,利润最大,最大为476元
    小问1解析:
    解:设文具A,文具B的进价分别是元、元,
    依题意得:,
    解得:,
    答:文具A,文具B进价分别是17元、40元.
    小问2解析:
    设购进文具的数量是个,则购进文具的数量是个,
    依题意得:,
    解得:,
    设总利润为,
    依题意得:,
    随的增大而增大,

    当时,此时,有最大值,最大值为,
    答:当购进文具的数量是42个,则购进文具的数量是28个时,利润最大,最大为476元.
    23. 问题探究:
    (1)在中,,,点D在边上,点E是射线上一动点,将线段绕点D逆时针旋转,旋转角为,得到线段,连接,交于点G.
    ①如图1,当时,点D为线段的中点,则线段与的数量关系是__________.
    ②如图2,当时,点D为线段的中点,,当的长度最小时,的长度为__________.
    综合运用:
    (2)如图3,在中,,,若D是边上一点,,且,E是边上的动点,若点E绕点D顺时针旋转的对应点是F,连接,,求长度的最小值.
    答案:(1)①,②;(2)
    解析:解:①结论:;
    ,,
    是等边三角形,


    ,,
    是等边三角形,






    ②解:如图2中,连接,并延长,
    是等腰直角三角形,


    ,,
    是等腰直角三角形,








    当时,的值最小,
    如图3,连接,

    此时为等腰直角三角形,
    设,
    中,由勾股定理得:,解得,
    即最小值为.
    (2)如图4,将绕点D顺时针旋转至,交于点O,连接交于点G,过点A作,垂足点N,则,
    ∵,
    ∴,
    ∵,
    ∴,
    ∴,
    ∴,
    ∵,
    ∴,
    ∵,
    ∴,
    ∴,
    ∴,
    ∴,
    ∴当时,最短,
    ∵,
    ∴,
    ∵,
    ∴,
    ∴,
    ∴,
    ∴,
    ∵,,
    ∴,,
    ∵当时,最短,而,
    ∴,
    ∴最小值为.

    相关试卷

    陕西省西安市碑林区西北工业大学附属中学2023-2024学年八年级下学期期末数学试题:

    这是一份陕西省西安市碑林区西北工业大学附属中学2023-2024学年八年级下学期期末数学试题,共4页。

    黑龙江省哈尔滨市工业大学附属中学2023-2024学年八年级下学期期中考试数学试卷:

    这是一份黑龙江省哈尔滨市工业大学附属中学2023-2024学年八年级下学期期中考试数学试卷,共10页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    陕西省西安市碑林区西北工业大学附属中学2023-2024学年八年级下学期期中数学试题(原卷版+解析版):

    这是一份陕西省西安市碑林区西北工业大学附属中学2023-2024学年八年级下学期期中数学试题(原卷版+解析版),文件包含陕西省西安市碑林区西北工业大学附属中学2023-2024学年八年级下学期期中数学试题原卷版docx、陕西省西安市碑林区西北工业大学附属中学2023-2024学年八年级下学期期中数学试题解析版docx等2份试卷配套教学资源,其中试卷共25页, 欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map