[数学]云南省昆明市禄劝县2023-2024数学年高一下学期数学期中考试试题
展开这是一份[数学]云南省昆明市禄劝县2023-2024数学年高一下学期数学期中考试试题,共4页。试卷主要包含了填写答题卡的内容用2B铅笔填写,提前 xx 分钟收取答题卡等内容,欢迎下载使用。
考试时间:分钟 满分:分
姓名:____________ 班级:____________ 学号:____________
*注意事项:
1、填写答题卡的内容用2B铅笔填写
2、提前 xx 分钟收取答题卡
第Ⅰ卷 客观题
第Ⅰ卷的注释
一、单选题:本题共7小题,每小题5分,共35分.在每小题给出的选项中,只有一项是符合题目要求的.(共7题;共35分)
1. 若复数 , 则z的实部与虚部的和为( )
2. ( )
3. 的三个内角所对边的长分别为 , 若 , 则( )
4. 设是两条不同的直线,是两个不同的平面,则下列结论正确的是( )
5. 平行四边形ABCD中,点E满足 , 则( )
6. 在正方体中,点为线段上的动点,分别为棱的中点,若平面 , 则( )
7. 中, , AD为角A的平分线, , 则的最小值是( )
二、多选题:本题共3小题,共18分.在每小题给出的选项中,有多项符合题目要求.(共3题;共18分)
8. 已知向量 , 下列结论中正确的是( )
9. 下列结论正确的是( )
10. 的三个内角所对边的长分别为 , 其外接圆半径为R,内切圆半径为r,满足 , 的面积为6,则( )
三、填空题:本题共4小题,每小题5分,共20分.(共4题;共20分)
11. 若复数(为虚数单位),则____________________.
12. 已知与是两个不共线的向量, , 若三点共线,则实数____________________.
13. “牟合方盖”是我四古代数学家刘徽在研究球的体积过程中构造的一个和谐优美的几何模型,在正方体内作两个互相垂直的内切圆柱,其相交的部分就是牟合方盖.如图,已知棱长为2的正方体除去按上述方法截得的牟合方盖后剩余的体积是 , 则牟合方盖与截得它的正方体的外接球的体积之比是____________________.
14. 平面向量满足 , , 则的最小值为____________________.
第Ⅱ卷 主观题
第Ⅱ卷的注释
四、解答题:本题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤.(共5题;共77分)
15. 已知 , 向量与的夹角.
(1) 若 , 求k的值;
(2) 求.
16. 设复数 , m为实数.
(1) 当m为何值时,z是纯虚数;
(2) 若 , 求的值;
(3) 若复数在复平面内对应的点在第三象限,求实数m的取值范围.
17. 如图,已知在侧棱垂直于底面的三棱柱中, , , 点是的中点.
(1) 求证:平面
(2) 求三棱锥的体积.
18. 老王拟将自家一块直角三角形地按如图规划成3个功能区:区域规划为枇杷林和放养走地鸡,区域规划为民宿供游客住宿及餐饮,区域规划为鱼塘养鱼供垂钓.为安全起见,在鱼塘周围筑起护栏,已知 , , , .
(1) 若 , 求护栏的长度(即的周长);
(2) 若鱼塘的面积是民宿面积的倍,求 .
19. 在锐角中,角的对边分别为 , S为的面积,且 .
(1) 求的值;
(2) 求的取值范围. 题号
一
二
三
四
评分
阅卷人
得分
A . -1
B . 1
C . 5
D . -5
A .
B .
C .
D .
A .
B .
C .
D .
A . 若 , 则
B . 若 , 则
C . 若 , 则
D . 若 , 则
A .
B . -1
C . 1
D .
A .
B .
C .
D .
A .
B .
C .
D .
阅卷人
得分
A . 若 , 则
B . 若 , 则与的夹角的余弦值为
C . 当时,在上的投影向量为
D . 当时,与的夹角为锐角
A . 在棱柱的所有面中,至少有两个面互相平行
B . 用斜二测画法画水平放置的边长为1的正三角形,它的直现图的面积是
C . 正方体中,直线与是异面直线
D . 正方体中,分别为的中点,P是线段(不含端点)上的动点,过M,N,P点的平面截该正方体所得的截面为六边形
A .
B .
C .
D .
阅卷人
得分
阅卷人
得分
相关试卷
这是一份云南省昆明市禄劝县2023-2024学年高一下学期数学期中考试试题,共4页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。
这是一份2023-2024学年云南省昆明市禄劝县高一(下)期中数学试卷(含解析),共13页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。
这是一份云南省昆明市禄劝县2023-2024学年高一下学期期中考试数学试题,文件包含高一下学期期中数学试题pdf、高一下学期期中数学试题答案pdf、数学答题卡pdf等3份试卷配套教学资源,其中试卷共11页, 欢迎下载使用。