终身会员
搜索
    上传资料 赚现金

    适用于新教材提优版2024届高考数学一轮复习学案第八章直线和圆圆锥曲线8.10圆锥曲线中求值与证明问题新人教A版

    立即下载
    加入资料篮
    适用于新教材提优版2024届高考数学一轮复习学案第八章直线和圆圆锥曲线8.10圆锥曲线中求值与证明问题新人教A版第1页
    适用于新教材提优版2024届高考数学一轮复习学案第八章直线和圆圆锥曲线8.10圆锥曲线中求值与证明问题新人教A版第2页
    还剩2页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    适用于新教材提优版2024届高考数学一轮复习学案第八章直线和圆圆锥曲线8.10圆锥曲线中求值与证明问题新人教A版

    展开

    这是一份适用于新教材提优版2024届高考数学一轮复习学案第八章直线和圆圆锥曲线8.10圆锥曲线中求值与证明问题新人教A版,共4页。
    例1 (12分)(2022·新高考全国Ⅰ)已知点A(2,1)在双曲线C:eq \f(x2,a2)-eq \f(y2,a2-1)=1(a>1)上,直线l交C于P,Q两点,直线AP,AQ的斜率之和为0.
    (1)求l的斜率;[切入点:kAP+kAQ=0]
    (2)若tan∠PAQ=2eq \r(2),求△PAQ的面积.[关键点:利用tan∠PAQ求kAP,kAQ]
    思维升华 求值问题即是根据条件列出对应的方程,通过解方程求解.
    跟踪训练1 在平面直角坐标系Oxy中,已知椭圆C:eq \f(x2,a2)+eq \f(y2,b2)=1(a>b>0)过点eq \b\lc\(\rc\)(\a\vs4\al\c1(1,\f(\r(2),2))),焦距与长轴之比为eq \f(\r(2),2),A,B分别是椭圆C的上、下顶点,M是椭圆C上异于A,B的一点.
    (1)求椭圆C的方程;
    ________________________________________________________________________
    ________________________________________________________________________
    ________________________________________________________________________
    ________________________________________________________________________
    (2)若点P在直线x-y+2=0上,且eq \(BP,\s\up6(→))=3eq \(BM,\s\up6(→)),求△PMA的面积;
    (3)过点M作斜率为1的直线分别交椭圆C于另一点N,交y轴于点D,且点D在线段OA上(不包括端点O,A),直线NA与直线BM交于点P,求eq \(OD,\s\up6(→))·eq \(OP,\s\up6(→))的值.
    ________________________________________________________________________
    ________________________________________________________________________
    ________________________________________________________________________
    ________________________________________________________________________
    题型二 证明问题
    例2 (2023·邵阳模拟)已知抛物线C的焦点F在x轴上,过F且垂直于x轴的直线交C于A(点A在第一象限),B两点,且|AB|=4.
    (1)求C的标准方程;
    (2)已知l为C的准线,过F的直线l1交C于M,N(M,N异于A,B)两点,证明:直线AM,BN和l相交于一点.
    ________________________________________________________________________
    ________________________________________________________________________
    ________________________________________________________________________
    ________________________________________________________________________
    思维升华 圆锥曲线证明问题的类型及求解策略
    (1)圆锥曲线中的证明问题,主要有两类:一是证明点、直线、曲线等几何元素中的位置关系,如:某点在某直线上、某直线经过某个点、某两条直线平行或垂直等;二是证明直线与圆锥曲线中的一些数量关系(相等或不等).
    (2)解决证明问题时,主要根据直线与圆锥曲线的性质、直线与圆锥曲线的位置关系等,通过相关性质的应用、代数式的恒等变形以及必要的数值计算等进行证明.
    跟踪训练2 (2022·宁德模拟)若Aeq \b\lc\(\rc\)(\a\vs4\al\c1(-1,-\f(\r(2),2))),Beq \b\lc\(\rc\)(\a\vs4\al\c1(1,\f(\r(2),2))),C(0,1),Deq \b\lc\(\rc\)(\a\vs4\al\c1(\f(\r(3),2),\f(1,2)))四点中恰有三点在椭圆T:eq \f(x2,a2)+eq \f(y2,b2)=1(a>b>0)上.
    (1)求椭圆T的方程;
    (2)动直线y=eq \f(\r(2),2)x+t(t≠0)与椭圆交于E,F两点,EF的中点为M,连接OM(其中O为坐标原点)交椭圆于P,Q两点,证明:|ME|·|MF|=|MP|·|MQ|.
    ________________________________________________________________________
    ________________________________________________________________________
    ________________________________________________________________________
    ________________________________________________________________________

    相关学案

    2025年高考数学一轮复习-重难专攻(十)圆锥曲线中的证明、探究性问题【导学案】:

    这是一份2025年高考数学一轮复习-重难专攻(十)圆锥曲线中的证明、探究性问题【导学案】,共11页。

    2024年高二数学暑期培优讲义 第09讲 圆锥曲线中求值与证明问题(2份打包,原卷版+教师版):

    这是一份2024年高二数学暑期培优讲义 第09讲 圆锥曲线中求值与证明问题(2份打包,原卷版+教师版),文件包含2024年高二数学暑期培优讲义第09讲圆锥曲线中求值与证明问题学生版doc、2024年高二数学暑期培优讲义第09讲圆锥曲线中求值与证明问题教师版doc、2024年高二数学暑期培优讲义第09讲圆锥曲线中求值与证明问题学生版pdf、2024年高二数学暑期培优讲义第09讲圆锥曲线中求值与证明问题教师版pdf等4份学案配套教学资源,其中学案共28页, 欢迎下载使用。

    人教A版普通高中数学一轮复习第八章第八节第二课时圆锥曲线中的求值与证明问题学案:

    这是一份人教A版普通高中数学一轮复习第八章第八节第二课时圆锥曲线中的求值与证明问题学案,共13页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map