福建省福清市2023-2024学年高二下学期期末质量检测数学试题
展开
这是一份福建省福清市2023-2024学年高二下学期期末质量检测数学试题,共8页。试卷主要包含了考试结束,考生必须将答题卡交回等内容,欢迎下载使用。
注意事项:
1.答题前,考生务必在试题卷、答题卡规定的地方填写自己的准考证号、姓名,考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号、姓名是否一致.
2.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后、再选涂其它答案标号.第Ⅱ卷用0.5毫米黑色签字笔在答题卡上书写作答.在试题卷上作答,答案无效;
3.考试结束,考生必须将答题卡交回.
第Ⅰ卷
一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知数列满足,,则
A.7B.8C.10D.11
2.福厦高铁全线共设8个客运站:福州南、福清西、莆田、泉港、泉州东、泉州南、厦门北、漳州,则铁路部门应为福厦高铁线上的这8个站间准备不同的火车票的种数为( )
A.28B.56C.64D.112
3.已知函数,则( )
A.0B.2C.3D.4
4.将4个不同的小球全部投入3个不同的盘子(每个盒子容纳的小球的个数不限),则所有的投放方法数为( )
A.B.C.D.
5.已知函数,则“”是“在上单调递增”的( )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件
6.地图涂色是一类经典的数学问题.如图,用4种不同的颜色涂所给图形中的4个区域,要求相邻区域的颜色不能相同,则不同的涂色方法有( )
A.24种B.48种C.72种D.84种
7.在等差数列中,,则( )
A.7B.11C.14D.16
8.已知函数,则( )
A.B.
C.D.
二、多项选择题:本题共3小题,每小题6分,共18分。在每小题给出的四个选项中,有多项是符合题目要求的。全部选对的得6分,部分选对的得部分分,有选错的得0分.
9.下列求导运算正确的是( )
A.若,则B.若,则
C.若,则D.若,则
10.已知函数,则( )
A.的极大值点为B.的极大值为
C.有两个零点D.直线是曲线的一条切线
11.如图,满足,,以的斜边为第2个直角三角形的直角边,且,再以的斜边为第3个直角三角形的直角边,且,依此方法一直继续下去,记第个直角三角形为,则( )
A.B.C.D.
第Ⅱ卷
三、填空题:本大题共3小题,每小题5分,共15分.
12.在等比数列中,,,则__________.
13.甲、乙、丙、丁4人到三所学校去应聘,若每人恰被一所学校录用,每所学校至少录用其中1人,则所有不同的录用情况种数为__________(用数字作答).
14.已知函数有且仅有一个零点,则实数的取值范围为__________.
四、解答题:本大题共5小题,共7分。解答应写出文字说明、证明过程或演算步骤.
15.(本小题满分13分)
按要求列出式子,再计算结果,用数字作答.
(1)在5件产品中,有3件正品,2件次品,从这5件产品中任意抽取3件.
(ⅰ)抽出的3件中恰有1件正品的抽法有多少种?
(ⅱ)抽出的3件中至少有1件次品的抽法有多少种?
(2)现有,,等5人排成一排照相,按下列要求各有多少种不同的排法.
(ⅰ)若,之间恰有一人,有多少种不同的排法?
(ⅱ)不站左端,且不站右端,有多少种不同的排法?
16.(本小题满分15分)
设为数列的前项和,已知,.
(1)求证:是等差数列;
(2)求数列的前项和.
17.(本小题满分15分)
设是函数的导函数,是函数的导数,若方程有实数解,则称点为的“拐点”.经过探究发现:任何一个三次函数都有“拐点”且“拐点”就是三次函数图象的对称中心.已知三次函数的对称中心为.
(1)求实数,的值;
(2)求的极值.
18.(本小题满分17分)
已知数列与等差数列,若,,.
(1)求,的通项公式;
(2)求数列的前项和.
19.(本小题满分17分)
已知函数.
(1)若,求曲线在点处的切线的斜率;
(2)若,讨论的单调性;
(3)若,且时,恒成立,求实数的取值范围.
2023—2024学年第二学期高二年期末质量检测
数学参考答案及评分细则
评分说明:
1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制定相应的评分细则.
2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应给分数的一半;如果后继部分的解答有较严重的错误,就不再给分.
3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.
4.只给整数分数.选择题和填空题不给中间分.
一、单项选择题:本题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.A 2.B 3.C 4.A
5.A 6.D 7.C 8.D
二、多项选择题:本题共3小题,每小题6分,满分18分.在每小题给出的四个选项中,有多项是符合题目要求的.全部选对的得6分,部分选对的得部分分,有选错的得0分.
9.BC 10.ABD 11.ABD
二、填空题:每小题5分,满分15分.
12.4 13.36 14.
三、解答题:本大题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤.
15.(1)(ⅰ)抽出的3件中恰有1件次品是指1件正品,2件次品,则有种不同的抽法;
······················································3分
(ⅱ)解法一:抽出的3件中至少有1件次品的抽法有两种情况:只有1件次品的抽法和2件次品的抽法,由(ⅰ)得有2件次品的抽法为种不同的抽法,只1件次品的抽法为种不同的抽法,共有种不同的抽法.······················································6分
解法二:抽出的3件中至少有1件次品的抽法数,是在5件产品中任意抽出3件的抽法数,减去抽出的3件产品全是正品的抽法数,所以共有种不同的抽法.·············· 6分
(2)(ⅰ)将A、某人、B看作一个整体,进行捆绑,再将另外两人一起排列,所以一共有36种排法.······················································9分
(ⅱ)解法一:因为5个人全排列有排法,······················································10分
且A站左端有种排法,B站右端有种排法,A站左端且B站右端有种排法,···············11分
所以A不站左端,且B不站右端有种排法.··································· 13分
解法二:依题意可得:整件事可分为B站左端,和B不站左端.
若B站左端,则其他4人全排列,有种排法;····························································10分
若B不站左端,则其他3人中选出1人站在左端,有种选法,又由于B不站左端,也不站右端,有种排法,剩下3人有有种排法,所以B不站左端有排法;·······························11分
所以A不站左端,且B不站右端有排法.·····································13分
(注:如若没给解释说明,但是式子正确,也给满分.)
16.(1)当时,,则.···············································1分
因为①.
所以时,②···························································2分
由①-②得时,,即.···························4分
因为,所以,即.············································6分
故是以1为首项,1为公差的等差数列. ··················································7分
(2)由(1),得.························································9分
所以,············································································· 10分
························································12分
··········································································14分
.·················································································15分
17.(1)因为,
所以,·································································· 1分
所以,························································2分
又因为函数的对称中心为,
所以,············································6分
即,解得.···························································8分
(2)由(1)知,,····················································9分
所以,····························10分
由,得或,·································································11分
当变化时,,的变化情况如下表所示:
················································································································14分
因此,的极大值为,极小值为.·····································15分
18.(1)因为,所以,······································1分
又,得.················································································2分
所以数列是以2为首项,2为公比的等比数列. ·······································3分
所以,故.·······································4分
则.····························································································5分
设等差数列的公差为,则,解得.····························6分
所以.···································································7分
(2)由(1)知,,,
所以,···································································8分
所以············································9分
···································10分
两式相减,得
·····································12分
····················································13分
··············································································14分
故.········································································15分
19.(1)因为,,所以,
所以,···································································1分
又因为函数的图象过点,
所以,····················································································2分
即,解得,························································3分
所以,····················································································4分
即曲线在点处的切线的斜率为;······································5分
(2)因为,所以,所以,························6分
当时,,在区间上单调递增;······················7分
当时,令,解得,······································8分
当时,;当时,;
所以函数在单调递减,在单调递增;·····················10分
综上:当时,在区间上单调递增;
当时,在上单调递减,在上单调递增. ············11分
(3)因为,所以,所以,
设,则,
当时,,所以在上单调递增,且;······12分
①当时,,即,
所以函数在上单调递增,····························································13分
所以当时,,所以符合题意,.························14分
②当时,又在上单调递增,且,
当时,,
,使得,·································································15分
,,即,所以在上单调递减,
,,即,所以在上单调递增,
所以,所以不合题意. ········································16分
综上,实数的取值范围为.···································································17分1
2
0
0
2
相关试卷
这是一份福建省福清市2023-2024学年高二下学期期末质量检测数学试题,文件包含20232024学年第二学期高二年期末考试质量检测数学参考答案pdf、数学pdf等2份试卷配套教学资源,其中试卷共7页, 欢迎下载使用。
这是一份福建省厦门市2023-2024学年高二下学期期末质量检测数学试题,共4页。
这是一份福建省南平市2023-2024学年高二下学期期末质量检测数学试题,共9页。试卷主要包含了“在上单调递增”是“”的,若,,则,以表示数集M中最大的数,若,则n的值可能为,已知函数等内容,欢迎下载使用。