搜索
    上传资料 赚现金
    英语朗读宝

    福建省福清市2023-2024学年高二下学期期末质量检测数学试题

    福建省福清市2023-2024学年高二下学期期末质量检测数学试题第1页
    福建省福清市2023-2024学年高二下学期期末质量检测数学试题第2页
    福建省福清市2023-2024学年高二下学期期末质量检测数学试题第3页
    还剩5页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    福建省福清市2023-2024学年高二下学期期末质量检测数学试题

    展开

    这是一份福建省福清市2023-2024学年高二下学期期末质量检测数学试题,共8页。试卷主要包含了考试结束,考生必须将答题卡交回等内容,欢迎下载使用。
    注意事项:
    1.答题前,考生务必在试题卷、答题卡规定的地方填写自己的准考证号、姓名,考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号、姓名是否一致.
    2.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后、再选涂其它答案标号.第Ⅱ卷用0.5毫米黑色签字笔在答题卡上书写作答.在试题卷上作答,答案无效;
    3.考试结束,考生必须将答题卡交回.
    第Ⅰ卷
    一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
    1.已知数列满足,,则
    A.7B.8C.10D.11
    2.福厦高铁全线共设8个客运站:福州南、福清西、莆田、泉港、泉州东、泉州南、厦门北、漳州,则铁路部门应为福厦高铁线上的这8个站间准备不同的火车票的种数为( )
    A.28B.56C.64D.112
    3.已知函数,则( )
    A.0B.2C.3D.4
    4.将4个不同的小球全部投入3个不同的盘子(每个盒子容纳的小球的个数不限),则所有的投放方法数为( )
    A.B.C.D.
    5.已知函数,则“”是“在上单调递增”的( )
    A.充分不必要条件B.必要不充分条件
    C.充要条件D.既不充分也不必要条件
    6.地图涂色是一类经典的数学问题.如图,用4种不同的颜色涂所给图形中的4个区域,要求相邻区域的颜色不能相同,则不同的涂色方法有( )
    A.24种B.48种C.72种D.84种
    7.在等差数列中,,则( )
    A.7B.11C.14D.16
    8.已知函数,则( )
    A.B.
    C.D.
    二、多项选择题:本题共3小题,每小题6分,共18分。在每小题给出的四个选项中,有多项是符合题目要求的。全部选对的得6分,部分选对的得部分分,有选错的得0分.
    9.下列求导运算正确的是( )
    A.若,则B.若,则
    C.若,则D.若,则
    10.已知函数,则( )
    A.的极大值点为B.的极大值为
    C.有两个零点D.直线是曲线的一条切线
    11.如图,满足,,以的斜边为第2个直角三角形的直角边,且,再以的斜边为第3个直角三角形的直角边,且,依此方法一直继续下去,记第个直角三角形为,则( )
    A.B.C.D.
    第Ⅱ卷
    三、填空题:本大题共3小题,每小题5分,共15分.
    12.在等比数列中,,,则__________.
    13.甲、乙、丙、丁4人到三所学校去应聘,若每人恰被一所学校录用,每所学校至少录用其中1人,则所有不同的录用情况种数为__________(用数字作答).
    14.已知函数有且仅有一个零点,则实数的取值范围为__________.
    四、解答题:本大题共5小题,共7分。解答应写出文字说明、证明过程或演算步骤.
    15.(本小题满分13分)
    按要求列出式子,再计算结果,用数字作答.
    (1)在5件产品中,有3件正品,2件次品,从这5件产品中任意抽取3件.
    (ⅰ)抽出的3件中恰有1件正品的抽法有多少种?
    (ⅱ)抽出的3件中至少有1件次品的抽法有多少种?
    (2)现有,,等5人排成一排照相,按下列要求各有多少种不同的排法.
    (ⅰ)若,之间恰有一人,有多少种不同的排法?
    (ⅱ)不站左端,且不站右端,有多少种不同的排法?
    16.(本小题满分15分)
    设为数列的前项和,已知,.
    (1)求证:是等差数列;
    (2)求数列的前项和.
    17.(本小题满分15分)
    设是函数的导函数,是函数的导数,若方程有实数解,则称点为的“拐点”.经过探究发现:任何一个三次函数都有“拐点”且“拐点”就是三次函数图象的对称中心.已知三次函数的对称中心为.
    (1)求实数,的值;
    (2)求的极值.
    18.(本小题满分17分)
    已知数列与等差数列,若,,.
    (1)求,的通项公式;
    (2)求数列的前项和.
    19.(本小题满分17分)
    已知函数.
    (1)若,求曲线在点处的切线的斜率;
    (2)若,讨论的单调性;
    (3)若,且时,恒成立,求实数的取值范围.
    2023—2024学年第二学期高二年期末质量检测
    数学参考答案及评分细则
    评分说明:
    1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制定相应的评分细则.
    2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应给分数的一半;如果后继部分的解答有较严重的错误,就不再给分.
    3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.
    4.只给整数分数.选择题和填空题不给中间分.
    一、单项选择题:本题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
    1.A 2.B 3.C 4.A
    5.A 6.D 7.C 8.D
    二、多项选择题:本题共3小题,每小题6分,满分18分.在每小题给出的四个选项中,有多项是符合题目要求的.全部选对的得6分,部分选对的得部分分,有选错的得0分.
    9.BC 10.ABD 11.ABD
    二、填空题:每小题5分,满分15分.
    12.4 13.36 14.
    三、解答题:本大题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤.
    15.(1)(ⅰ)抽出的3件中恰有1件次品是指1件正品,2件次品,则有种不同的抽法;
    ······················································3分
    (ⅱ)解法一:抽出的3件中至少有1件次品的抽法有两种情况:只有1件次品的抽法和2件次品的抽法,由(ⅰ)得有2件次品的抽法为种不同的抽法,只1件次品的抽法为种不同的抽法,共有种不同的抽法.······················································6分
    解法二:抽出的3件中至少有1件次品的抽法数,是在5件产品中任意抽出3件的抽法数,减去抽出的3件产品全是正品的抽法数,所以共有种不同的抽法.·············· 6分
    (2)(ⅰ)将A、某人、B看作一个整体,进行捆绑,再将另外两人一起排列,所以一共有36种排法.······················································9分
    (ⅱ)解法一:因为5个人全排列有排法,······················································10分
    且A站左端有种排法,B站右端有种排法,A站左端且B站右端有种排法,···············11分
    所以A不站左端,且B不站右端有种排法.··································· 13分
    解法二:依题意可得:整件事可分为B站左端,和B不站左端.
    若B站左端,则其他4人全排列,有种排法;····························································10分
    若B不站左端,则其他3人中选出1人站在左端,有种选法,又由于B不站左端,也不站右端,有种排法,剩下3人有有种排法,所以B不站左端有排法;·······························11分
    所以A不站左端,且B不站右端有排法.·····································13分
    (注:如若没给解释说明,但是式子正确,也给满分.)
    16.(1)当时,,则.···············································1分
    因为①.
    所以时,②···························································2分
    由①-②得时,,即.···························4分
    因为,所以,即.············································6分
    故是以1为首项,1为公差的等差数列. ··················································7分
    (2)由(1),得.························································9分
    所以,············································································· 10分
    ························································12分
    ··········································································14分
    .·················································································15分
    17.(1)因为,
    所以,·································································· 1分
    所以,························································2分
    又因为函数的对称中心为,
    所以,············································6分
    即,解得.···························································8分
    (2)由(1)知,,····················································9分
    所以,····························10分
    由,得或,·································································11分
    当变化时,,的变化情况如下表所示:
    ················································································································14分
    因此,的极大值为,极小值为.·····································15分
    18.(1)因为,所以,······································1分
    又,得.················································································2分
    所以数列是以2为首项,2为公比的等比数列. ·······································3分
    所以,故.·······································4分
    则.····························································································5分
    设等差数列的公差为,则,解得.····························6分
    所以.···································································7分
    (2)由(1)知,,,
    所以,···································································8分
    所以············································9分
    ···································10分
    两式相减,得
    ·····································12分
    ····················································13分
    ··············································································14分
    故.········································································15分
    19.(1)因为,,所以,
    所以,···································································1分
    又因为函数的图象过点,
    所以,····················································································2分
    即,解得,························································3分
    所以,····················································································4分
    即曲线在点处的切线的斜率为;······································5分
    (2)因为,所以,所以,························6分
    当时,,在区间上单调递增;······················7分
    当时,令,解得,······································8分
    当时,;当时,;
    所以函数在单调递减,在单调递增;·····················10分
    综上:当时,在区间上单调递增;
    当时,在上单调递减,在上单调递增. ············11分
    (3)因为,所以,所以,
    设,则,
    当时,,所以在上单调递增,且;······12分
    ①当时,,即,
    所以函数在上单调递增,····························································13分
    所以当时,,所以符合题意,.························14分
    ②当时,又在上单调递增,且,
    当时,,
    ,使得,·································································15分
    ,,即,所以在上单调递减,
    ,,即,所以在上单调递增,
    所以,所以不合题意. ········································16分
    综上,实数的取值范围为.···································································17分1
    2
    0
    0
    2

    相关试卷

    福建省福清市2023-2024学年高二下学期期末质量检测数学试题:

    这是一份福建省福清市2023-2024学年高二下学期期末质量检测数学试题,文件包含20232024学年第二学期高二年期末考试质量检测数学参考答案pdf、数学pdf等2份试卷配套教学资源,其中试卷共7页, 欢迎下载使用。

    福建省厦门市2023-2024学年高二下学期期末质量检测数学试题:

    这是一份福建省厦门市2023-2024学年高二下学期期末质量检测数学试题,共4页。

    福建省南平市2023-2024学年高二下学期期末质量检测数学试题:

    这是一份福建省南平市2023-2024学年高二下学期期末质量检测数学试题,共9页。试卷主要包含了“在上单调递增”是“”的,若,,则,以表示数集M中最大的数,若,则n的值可能为,已知函数等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map