2021-2022年上海市浦东新区六年级下册数学期末试卷及答案
展开1、下列说法正确的是 ( )
(A)一个数的绝对值等于它本身,这个数一定是正数
(B)一个数的绝对值等于它的相反数,这个数一定是负数
(C)绝对值越大,这个数越大
(D)两个负数,绝对值大的那个数反而小
2、设,那么下列式子中错误的是( )
(A) (B) (C) (D)
3、学校的篮球数比排球数的2倍少3个,篮球数与排球数的比是,求两种求各有多少?如果设篮球有个,排球有个,那么依题意得到的方程组是( )
(A) (B) (C) (D)
4、如图,使得它们折成正方体后,对面上的数互为倒数,则填入正方形、、的三数依次是( )
(A),, (B),, (C),, (D),,
5、如图,,,点、、在同一条直线上,则的度数为( )
(A) (B) (C) (D)
6、下列哪种方法不能检验直线与平面是否垂直( )
(A)铅垂线 (B)两块三角尺 (C)长方形纸片 (D)合页型折纸
二、填空题(本大题共12题,每题2分,满分24分)
7、的倒数是 _________
8、计算:____________
9、科学家对长江重新测量后发现,长江的长度约为米,用科学记数法可表示为________米
10、将方程变形为用含的式子表示,那么____________
11、三个边长为4厘米的正方体,拼成一个长方体,表面积减少了__________平方厘米
12、如图,在长方体中,与面平行的面是____________
13、检验平面与平面互相平行的方法有__________(写出一种即可)
14、已知:的余角是,则的补角是 _________
A
15、如图,,如果点在点的北偏东,那么点在点的南偏西_________
O
B
16、在直线上取、两点,使,再在线段上取一点,使,、分别是、的中点,则__________
17、已知不等式的正整数解恰是1,2,3,4,那么的取值范围是_________
18、已知,,平分,平分,那么的度数为_________度
三、简答题(本大题共6题,每题5分,满分30分)
19、计算: 20、解方程:
21、解不等式组:,并把解集在数轴上表示出来
22、解方程组: 23、解方程组:
24、已知与互余,且的补角比的2倍多,求的大小
四、解答题(本大题共3小题,每小题6分,满分18分)
25、补画长方体(虚线表示被遮住的线段,只要在已有图形基础上画出长方体,不必写画法)
26、如图,在直线AC上,是的平分线,在内,
(1)如图1,若是的平分线,则有,试说明理由;
(2)如图2,若,,求的度数
27、某服装厂生产一批某种款式的春装,已知每米的某种布料可做上衣的衣身3个或衣袖5只,现计划用132米这种布料生产这批秋装(不考虑布料的损耗),应分别用多少布料才能使做的衣身和衣袖恰好配套.
五、综合题(本大题共1题,满分10分)
28、在数轴上,点表示的数是,点表示的数是,原点为,机器人甲从点出发,速度为每秒3个单位,同时机器人乙从点出发,速度为每秒1个单位,两机器人同时出发.
(1)机器人甲向右运动,同时机器人乙向左运动,假设它们在点处相遇,求点所表示的数;
(2)在(1)的条件下,两个机器人在点处相遇后,继续向原来运动的方向运动,当机器人甲到达点时,文机器人乙所处位置表示的数;
(3)如果机器人甲从点处出发向右运动,机器人乙同时从点处出发向右运动,问几秒时机器人乙与原点的距离是机器人甲与原点的距离的2倍.2021-2022学年上海市建平西校六年级第二学期数学期末模拟试卷
一、选择题(本大题共6题,每题3分,满分18分)
1、下列说法正确的是 ( )
(A)一个数的绝对值等于它本身,这个数一定是正数
(B)一个数的绝对值等于它的相反数,这个数一定是负数
(C)绝对值越大,这个数越大
(D)两个负数,绝对值大的那个数反而小
【答案】D
2、设,那么下列式子中错误的是( )
(A) (B) (C) (D)
【答案】C
3、学校的篮球数比排球数的2倍少3个,篮球数与排球数的比是,求两种求各有多少?如果设篮球有个,排球有个,那么依题意得到的方程组是( )
(A) (B) (C) (D)
【答案】A
4、如图,使得它们折成正方体后,对面上的数互为倒数,则填入正方形、、的三数依次是( )
(A),, (B),, (C),, (D),,
【答案】A
5、如图,,,点、、在同一条直线上,则的度数为( )
(A) (B) (C) (D)
【答案】C
6、下列哪种方法不能检验直线与平面是否垂直( )
(A)铅垂线 (B)两块三角尺 (C)长方形纸片 (D)合页型折纸
【答案】C
二、填空题(本大题共12题,每题2分,满分24分)
7、的倒数是 _________
【答案】
8、计算:____________
【答案】
9、科学家对长江重新测量后发现,长江的长度约为米,用科学记数法可表示为________米
【答案】
10、将方程变形为用含的式子表示,那么____________
【答案】
11、三个边长为4厘米的正方体,拼成一个长方体,表面积减少了__________平方厘米
【答案】
12、如图,在长方体中,与面平行的面是____________
【答案】平面
13、检验平面与平面互相平行的方法有__________(写出一种即可)
【答案】长方形纸片法
14、已知:的余角是,则的补角是 _________
【答案】
A
15、如图,,如果点在点的北偏东,那么点在点的南偏西_________
O
B
【答案】60
16、在直线上取、两点,使,再在线段上取一点,使,、分别是、的中点,则__________
【答案】4
17、已知不等式的正整数解恰是1,2,3,4,那么的取值范围是_________
【答案】
18、已知,,平分,平分,那么的度数为_________度
【答案】30或70
简答题(本大题共6小题,每小题5分,满分30分)
19、计算:
【答案】
【解析】原式
20、解方程:
【答案】
【解析】
原方程的解是:
21、解不等式组:,并把解集在数轴上表示出来
【答案】
【解析】由①可得:
由②可得:
原不等式组的解集是:
22、解方程组:
【答案】
【解析】①+②可得:
将带入②,可得:
原方程组的解是:
23、解方程组:
【答案】
【解析】把①带入②并化简得: ④
④+③,得:
④-③,得:
把,代入①,得:
原方程组的解是:
24、已知与互余,且的补角比的2倍多,求的大小
【答案】
【解析】假设,
由题意可得:
解答题(本大题共3小题,每小题6分,满分18分)
25、补画长方体(虚线表示被遮住的线段,只要在已有图形基础上画出长方体,不必写画法)
【答案】
26、如图,在直线AC上,是的平分线,在内,
(1)如图1,若是的平分线,则有,试说明理由;
(2)如图2,若,,求的度数
【答案】(1)证明略(2)
【解析】(1)平分,平分,
,(角平分线的意义)
即
(2)设,,则
由题意可得:解得:
答:的度数为
27、某服装厂生产一批某种款式的春装,已知每米的某种布料可做上衣的衣身3个或衣袖5只,现计划用132米这种布料生产这批秋装(不考虑布料的损耗),应分别用多少布料才能使做的衣身和衣袖恰好配套
【答案】用60米布料做衣身,72米布料做衣袖,刚好配套
【解析】解:设用米布料做衣身,米布料做衣袖,则由题意可得:
,解得
答:用60米布料做衣身,72米布料做衣袖,刚好配套
五、综合题(本大题共1小题,满分10分)
28、在数轴上,点表示的数是,点表示的数是,原点为,机器人甲从点出发,速度为每秒3个单位,同时机器人乙从点出发,速度为每秒1个单位,两机器人同时出发.
(1)机器人甲向右运动,同时机器人乙向左运动,假设它们在点处相遇,求点所表示的数;
(2)在(1)的条件下,两个机器人在点处相遇后,继续向原来运动的方向运动,当机器人甲到达点时,文机器人乙所处位置表示的数;
(3)如果机器人甲从点处出发向右运动,机器人乙同时从点处出发向右运动,问几秒时机器人乙与原点的距离是机器人甲与原点的距离的2倍.
【解析】(1)设秒时,两机器人相遇
由题意可得:
解得:
所以点在数轴上对应的数为:
(2)设甲机器人从到一共用时秒,则由题意可得:
解得:,由于,此时机器人乙处于位置所表示的数为
(3)设秒时机器人乙与原点的距离是机器人甲与原点的距离的2倍
①当甲位于原点左侧时,可得:
②当甲位于原点右侧时,可得:
答:或者秒时机器人乙与原点的距离是机器人甲与原点的距离的2倍
2021-2022学年上海市浦东新区六年级上册期末数学试题及答案: 这是一份2021-2022学年上海市浦东新区六年级上册期末数学试题及答案,共14页。试卷主要包含了本试卷含四个大题,共28题;等内容,欢迎下载使用。
2020-2021学年上海市浦东新区六年级下册期中数学试题及答案: 这是一份2020-2021学年上海市浦东新区六年级下册期中数学试题及答案,共17页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。
2020-2021学年上海市浦东新区六年级下册期中数学卷及答案: 这是一份2020-2021学年上海市浦东新区六年级下册期中数学卷及答案,共12页。试卷主要包含了 计算,2).等内容,欢迎下载使用。