2024届高考物理一轮复习教案第十四章实验十三测量玻璃的折射率(粤教版新教材)
展开实验技能储备
1.实验原理
如图所示,当光线AO以一定的入射角θ1透过一块两面平行的玻璃砖时,通过插针法找出跟入射光线AO对应的出射光线O′B,从而画出光从空气射入玻璃后的折射光线OO′,求出折射角θ2,再根据n=eq \f(sin θ1,sin θ2)或n=eq \f(PN,QN′)计算出玻璃的折射率.
2.实验器材
木板、白纸、玻璃砖、大头针、图钉、量角器、三角板、铅笔.
3.实验步骤
(1)用图钉把白纸固定在木板上.
(2)在白纸上画一条直线aa′,并取aa′上的一点O为入射点,作过O点的法线MM′.
(3)画出线段AO作为入射光线,并在AO上插上P1、P2两根大头针.
(4)在白纸上放上玻璃砖,使玻璃砖的一条长边与直线aa′对齐,并画出另一条长边的对齐线bb′.
(5)眼睛在bb′的一侧透过玻璃砖观察两个大头针并调整视线方向,使P1的像被P2的像挡住,然后在眼睛这一侧插上大头针P3,使P3挡住P1、P2的像,再插上P4,使P4挡住P1、P2的像和P3.
(6)移去玻璃砖,拔去大头针,由大头针P3、P4的针孔位置确定出射光线O′B及出射点O′,连接O、O′得到线段OO′.
(7)用量角器测量入射角θ1和折射角θ2,并查出其正弦值sin θ1和sin θ2.
(8)改变入射角,重复实验.
4.数据分析
(1)计算法
用量角器测量入射角θ1和折射角θ2,并查出其正弦值sin θ1和sin θ2.算出不同入射角时的eq \f(sin θ1,sin θ2),并取平均值.
(2)图像法
改变不同的入射角θ1,测出不同的折射角θ2,作sin θ1-sin θ2的图像,由n=eq \f(sin θ1,sin θ2)可知图像应是过原点的直线,如图所示,其斜率为折射率.
(3)“单位圆”法
以入射点O为圆心,以一定的长度R为半径画圆,如图所示,sin θ1=eq \f(EH,OE),sin θ2=eq \f(E′H′,OE′),OE=OE′=R,则n=eq \f(sin θ1,sin θ2)=eq \f(EH,E′H′).只要用刻度尺量出EH、E′H′的长度就可以求出n.
5.注意事项
(1)实验时,应尽可能将大头针竖直插在纸上,且P1和P2之间、P3和P4之间、P2与O、P3与O′之间距离要稍大一些.
(2)入射角θ1不宜太大(接近90°),也不宜太小(接近0°).
(3)操作时手不能触摸玻璃砖的光洁光学面,也不能把玻璃砖界面当尺子画界线.
(4)实验过程中,玻璃砖与白纸的相对位置不能改变.
(5)玻璃砖应选用宽度较大的,宜在5 cm以上,若宽度太小,则测量误差较大.
考点一 教材原型实验
例1 某小组做测量玻璃的折射率实验,所用器材有:玻璃砖,大头针,刻度尺,圆规,笔,白纸.
(1)下列哪些措施能够提高实验准确程度______.
A.选用两光学表面间距大的玻璃砖
B.选用两光学表面平行的玻璃砖
C.选用粗的大头针完成实验
D.插在玻璃砖同侧的两枚大头针间的距离尽量大些
(2)该小组用同一套器材完成了四次实验,记录的玻璃砖界线和四个大头针扎下的孔洞如图所示,其中实验操作正确的是________.
(3)该小组选取了操作正确的实验记录,在白纸上画出光线的径迹,以入射点O为圆心作圆,与入射光线、折射光线分别交于A、B点,再过A、B点作法线NN′的垂线,垂足分别为C、D点,如图甲所示,则玻璃的折射率n=________.(用图中线段的字母表示)
(4)在用插针法测量玻璃的折射率的实验中,甲、乙两位同学在纸上画出的界面aa′、bb′与玻璃砖位置的关系分别如图乙中①、②所示,其中甲同学用的是矩形玻璃砖,乙同学用的是梯形玻璃砖.他们的其他操作均正确,且均以aa′、bb′为界面画光路图.则甲同学测得的折射率与真实值相比________(填“偏大”“偏小”或“不变”);乙同学测得的折射率与真实值相比________(填“偏大”“偏小”或“不变”).
答案 (1)AD (2)D (3)eq \f(AC,BD) (4)偏小 不变
解析 (1)为了使作图误差更小,应选用两光学表面间距大的玻璃砖,A正确;根据折射定律可知,如果两个光学面不平行,不影响入射角与折射角的值,所以对折射率的测定结果不产生影响,B错误;为了准确测量光路图,应选用较细的大头针来完成实验,选用粗的大头针完成实验时,容易出现观察误差,使光线实际并不平行,C错误;插在玻璃砖同侧的大头针之间的距离应适当大些,引起的角度误差会减小,D正确.
(2)由题图可知,选用的玻璃砖两光学表面平行,则入射光线应与出射光线平行,B、C错误;又光线在玻璃砖中与法线的夹角应小于光线在空气中与法线的夹角,A错误,D正确.
(3)由折射定律可知n=eq \f(sin∠AOC,sin∠BOD)=eq \f(\f(AC,AO),\f(BD,BO))=eq \f(AC,BD).
(4)如图,甲同学在测定折射率时,作出的折射光线如图中虚线所示,实线表示实际光线,可见折射角偏大,则由折射定律n =eq \f(sin θ1,sin θ2)可知,折射率n偏小.用题图②测折射率时,只要操作正确,折射率的测量值与玻璃砖形状无关,故乙同学测得的折射率与真实值相比不变.
例2 用圆弧状玻璃砖做测量玻璃折射率的实验时,先在白纸上放好圆弧状玻璃砖,在玻璃砖的一侧竖直插上两枚大头针P1、P2,然后在玻璃砖的另一侧观察,调整视线使P1的像被P2的像挡住,接着在眼睛所在的一侧插两枚大头针P3和P4,使P3挡住P1和P2的像,P4挡住P3以及P1和P2的像,在纸上标出大头针位置和圆弧状玻璃砖轮廓,如图甲所示,其中O为两圆弧圆心,图中已画出经P1、P2点的入射光线.
(1)在图甲上补画出所需的光路.
(2)为了测出玻璃的折射率,需要测量入射角和折射角,请在图甲中的AB分界面上标出这两个角,分别用i和r表示.
(3)为了保证在光线从弧面CD上射出,实验过程中,光线在弧面AB的入射角应适当________________(选填“小一些”“无所谓”或“大一些”).
(4)多次改变入射角,测得几组入射角和折射角,根据测得的入射角和折射角的正弦值,画出了如图乙所示的图像,由图像可知该玻璃的折射率n=________.
答案 (1)(2)见解析图 (3)小一些 (4)1.5
解析 (1)(2)连接P1、P2表示入射光线,连接P3、P4表示出射光线,连接两光线与玻璃砖的交点,即为折射光线,测量的入射角i、折射角r及光路图如图所示.
(3)为防止光线在弧面CD发生全反射,光线在弧面AB的入射角应适当小一些.
(4)根据题图乙得玻璃的折射率n=eq \f(sin i,sin r)=1.5.
考点二 探索创新实验
例3 某同学用半圆柱玻璃砖做测量玻璃的折射率实验,他的操作步骤如下:
A.用毫米刻度尺量出半圆柱玻璃砖的直径d,算出半径r=eq \f(d,2),然后确定圆心的位置,记在玻璃砖上;
B.在白纸上画一条直线作为入射光线,并在入射光线上插两枚大头针P1和P2;
C.让入射光线与玻璃砖的直径垂直,入射光线经过圆心O;
D.以圆心O为轴,缓慢逆时针转动玻璃砖,同时调整视线方向,直到从AB下方恰好看不到P2和P1的像,然后沿半圆柱玻璃砖直径画一条直线AB,并作出光路图,如图所示.
(1)看不到P2和P1的像是因为发生了________;
(2)只使用毫米刻度尺,还需要测量________(选填“OD”或“CD”)的长度,记作l;
(3)玻璃砖折射率的表达式n=________.
答案 (1)全反射 (2)CD (3)eq \f(d,2l)
解析 (1)看不到P2和P1的像是由于光线在AB面上发生了全反射.
(2)(3)只要测出“CD”的长度l,就相当于测出了临界角的正弦值,即sin C=eq \f(l,r),而sin C=eq \f(1,n),可得折射率n=eq \f(d,2l).
课时精练
1.(2023·广东梅州市质检)如图甲所示,是利用插针法测定玻璃砖折射率的实验得到的光路图,玻璃砖的入射面AB和出射面CD并不平行,则:
(1)以入射点O为圆心,以R=5 cm长度为半径画圆,与入射线PO交于M点,与折射线的延长线OQ交于F点,过M、F点分别向法线作垂线,量得MN=1.68 cm,FE=1.12 cm,则该玻璃砖的折射率n=________;
(2)若玻璃砖AB面与CD面平行,但某同学操作时将界线aa′、bb′画好后误用另一块宽度稍窄的玻璃砖如图乙所示,实验中除用原界线外,其他操作都正确,则测得玻璃砖的折射率将________.
A.偏大 B.偏小
C.不影响结果 D.不能确定
答案 (1)1.5 (2)B
解析 (1)由几何知识得,入射角的正弦
sin i=eq \f(MN,MO)=eq \f(MN,R)
折射角的正弦
sin r=eq \f(EF,OF)=eq \f(EF,R)
则得折射率
n=eq \f(sin i,sin r)=eq \f(MN,EF)=eq \f(1.68,1.12)=1.5;
(2)如图所示,实线是实际光线,虚线是该同学所作的光线,该同学利用插针法确定入射光线、折射光线后,测得的入射角不受影响,但测得的折射角比真实的折射角偏大,因此测得的折射率偏小.
2.某同学在利用“插针法”测量一块红色直角三角形玻璃砖的折射率时发现,由于玻璃的颜色较深,在另一侧很难观测到对侧所插的针.他想到可以用实验室的红色激光器来完成实验.如图所示,他在木板上固定好白纸,放好玻璃砖,正确作出了界面MN、MP、NP,然后让很细的激光平行于木板从玻璃砖的上界面MN入射.
(1)由于激光很强,不能用眼睛直接观测,该同学通过在木板上插入被激光照亮的针来确定激光光路,正确的插针顺序应是________.
A.P1、P2、P3、P4B.P4、P3、P2、P1
C.P1、P2、P4、P3D.P4、P3、P1、P2
(2)若P1P2与MN垂直,用量角器量得图中的θ1=60°,θ2=30°,则玻璃的折射率为________.
A.eq \r(3) B.eq \f(\r(3),3) C.eq \f(2\r(3),3) D.eq \f(\r(3),2)
(3)若激光器正常发光,平行木板从玻璃砖NP界面垂直射入玻璃砖,如图中虚线箭头所示.该同学发现在MP一侧始终找不到出射光线,则原因是__________________;该同学在MP一侧没有找到出射光线,但在MN一侧找到了出射光线,他依然用被激光照亮的针确定了激光在MN一侧的出射光线和NP一侧的入射光线,则测量后他__________(选填“能”或“不能”)计算出玻璃的折射率.
答案 (1)B (2)A (3)激光在MP界面上发生了全反射 能
解析 (1)四根针应该先插光路后面的针,否则光被挡住,后面的针无法确定位置,故正确的插针顺序应是P4、P3、P2、P1.
(2)在MP界面上,光的入射角为i=90°-θ1=30°,折射角为r=90°-θ2=60°,则玻璃的折射率为n=eq \f(sin r,sin i)=eq \f(sin 60°,sin 30°)=eq \r(3).
(3)入射光线与NP相垂直,在MP一侧没有找到出射光线,说明光线在MP上发生了全反射,根据几何关系可以求出光线在MN面上的入射角,由插针法得出折射角,从而由折射率公式可以计算出折射率.
3.(2023·广东韶关市调研)(1)用“插针法”测定玻璃的折射率,如图所示,玻璃砖4个光学面A、B、C、D.其中A、C两面相互平行,实验中对于入射面和出射面的选择,下列说法正确的是________.
A.只能选用A、C两面
B.不能选用C、D两面
C.既可以选用A、C两面,也可以选用A、B两面
(2)在完成“测定玻璃的折射率”的实验后,同学们对“插针法”的适用范围进行了讨论,玻璃砖的形状如图所示,下列说法正确的是________.
A.“插针法”只能用于测梯形玻璃砖的折射率
B.“插针法”只能用于测梯形玻璃砖和三角形玻璃砖的折射率
C.测梯形玻璃砖、三角形玻璃砖和半圆形玻璃砖的折射率均可用“插针法”
答案 (1)C (2)C
解析 (1)根据插针法测玻璃砖折射率的实验原理和实验步骤可知,实验时可以用A、C两面、或用C、D两面、或用A、B两面进行实验.故选C.
(2)只要操作正确,任何形状的玻璃砖均可用“插针法”测定折射率.故选C.
4.如图甲所示,在测定玻璃折射率的实验中,两位同学先在白纸上放好截面是正三角形ABC的三棱镜,并确定AB和AC界面的位置.然后在棱镜的左侧画出一条直线,并在线上竖直插上两枚大头针P1和P2,再从棱镜的右侧观察P1和P2的像.
(1)此后正确的操作步骤顺序是________.(选填选项前的字母)
A.插上大头针P3,使P3挡住P2的像
B.插上大头针P3,使P3挡住P1、P2的像
C.插上大头针P4,使P4挡住P3的像
D.插上大头针P4,使P4挡住P1、P2的像和P3
(2)正确完成上述操作后,在纸上标出大头针P3、P4的位置(图甲中已标出).为测定该种玻璃的折射率,两位同学分别用圆规及刻度尺作出了完整光路和若干辅助线,如图乙、丙所示.在图乙、丙中能够仅通过测量DE、FG的长度便可正确计算出折射率的是图________(选填“乙”或“丙”),所测玻璃折射率的表达式为n=________(用代表线段长度的字母DE、FG表示).
答案 (1)BD (2)丙 eq \f(DE,FG)
解析 (1)在棱镜的左侧画出一条直线,并在线上竖直插上两枚大头针P1和P2,确定入射光线,然后插上大头针P3,使P3挡住P1、P2的像,再插上大头针P4,使P4挡住P1、P2的像和P3,从而确定出射光线,故正确的操作步骤顺序是B、D;
(2)设入射角为α,折射角为β,对于题图乙有
sin α=eq \f(DE,R)
sin β=eq \f(FG,OG)
对于题图丙有
sin α=eq \f(DE,R)
sin β=eq \f(FG,R)
可知仅通过测量DE、FG的长度便可正确计算出折射率的是题图丙,折射率
n=eq \f(sin α,sin β)=eq \f(DE,FG).
5.小明同学为探究光的折射定律设计了如图所示的实验装置,在玻璃水槽中竖直放置的光屏由E和F两个半圆形光屏组成,其竖直方向的直径NOM为两半圆屏的分界线,其中半圆形光屏F可绕直径NOM在水平方向折转.
(1)实验时,先让光屏E、F位于同一平面内,一束激光贴着光屏E沿半径方向从空气斜射入水中,在光屏F上________(选填“能”或“不能”)看到折射后的光束;小明将光屏F沿逆时针(俯视)方向折转一定角度后,则在光屏F上________(选填“能”或“不能”)看到折射光线,这说明折射光线和入射光线________(选填“在”或“不在”)同一平面内;
(2)小明探究光从水射向空气时,折射角与入射角的关系,测得的数据如下表所示.由表中数据可知,光从水斜射入空气中时,折射角_______(选填“大于”“等于”或“小于”)入射角.
答案 (1)能 不能 在 (2)大于
解析 (1)先让光屏E、F位于同一平面内,一束激光贴着光屏E从空气斜射入水中,激光从光疏介质射入光密介质,在光屏F上能看到折射后的光束;当F屏沿逆时针(俯视)方向折转一定的角度后,则呈现折射光线的F屏和呈现入射光线的E屏不在同一平面内,所以在F屏上不能看到折射光线;这说明折射光线和入射光线在同一平面内;
(2)分析表格数据可知,光从水斜射入空气时,折射角大于入射角,且入射角增大时,折射角也增大.
入射角
22°
32°
41°
折射角
30°
45°
60°
2024届高考物理一轮复习教案第十四章实验十四用双缝干涉测量光的波长(粤教版新教材): 这是一份2024届高考物理一轮复习教案第十四章实验十四用双缝干涉测量光的波长(粤教版新教材),共8页。
2024届鲁科版新教材高考物理一轮复习教案第十四章光实验十三测量玻璃的折射率: 这是一份2024届鲁科版新教材高考物理一轮复习教案第十四章光实验十三测量玻璃的折射率,共11页。
2024届鲁科版新教材高考物理一轮复习教案第十四章光实验十四用双缝干涉测量光的波长: 这是一份2024届鲁科版新教材高考物理一轮复习教案第十四章光实验十四用双缝干涉测量光的波长,共7页。