专题05 全等三角形的判定(一)(含答案)【暑假预习课堂】新八年级数学同步精讲精练(人教版)
展开目录
【考点一 全等三角形的判定:边边边】
【考点二 全等三角形的判定:边角边】
【考点三 全等三角形的判定:角边角、角角边】
【聚焦考点1】
全等三角形的判定1:边边边(SSS)
文字:在两个三角形中,如果有三条边对应相等,那么这两个三角形全等.
图形:
符号:在与中,
证明的书写步骤:
①准备条件:证全等时要用的条件要先证好;②指明范围:写出在哪两个三角形中;
③摆齐根据:摆出三个条件用大括号括起来;④写出结论:写出全等结论.
注意:(1)说明两三角形全等所需的条件应按对应边的顺序书写.
(2)结论中所出现的边必须在所证明的两个三角形中.
用尺规作一个角等于已知角:已知:∠AOB.求作: ∠A′O′B′=∠AOB.
作法:(1)以点O 为圆心,任意长为半径画弧,分别交OA,OB 于点C、D;
(2)画一条射线O′A′,以点O′为圆心,OC 长为半径画弧,交O′A′于点C′;
(3)以点C′为圆心,CD 长为半径画弧,与第2 步中所画的弧交于点D′;
(4)过点D′画射线O′B′,则∠A′O′B′=∠AOB.
【典例剖析1】
【典例1-1】如图,AC=FD,BC=ED,要利用“SSS”来判定△ABC和△FED全等时,下面的4个条件中:①AE=FB;②AB=FE;③AE=BE;④BF=BE,可利用的是( )
A.①或②B.②或③C.①或③D.①或④
【典例1-2】用直尺和圆规画一个角等于已知角,是运用了“全等三角形的对应角相等”这一性质,其运用全等的方法是 (用字母写出).
针对训练1
【变式1-1】如图,已知AD=BC,根据“SSS”,还需要一个条件________,可证明△ABC≌△BAD;
【变式1-2】如图,点A,B,C,D在同一直线上,,,.求证:.
【变式1-3】如图,已知AB=AC,AD=AE,BE=CD.
(1)求证:∠BAC=∠EAD;
(2)写出∠1,∠2,∠3之间的数量关系,并予以证明.
【能力提升1】 全等形的判定:边边边
【提升1-1】如图,已知AB=AD,AC=AE,BC=DE,直线BC与AD,DE分别交于点F,G,且∠DGB=65°,∠EAB=120°,则∠CAD的度数为___________.
【提升1-2】莆仙戏是现存最古老的地方戏剧种之一,被称为“宋元南戏的活化石”,2021年5月莆仙戏《踏伞行》获评为“2020年度国家舞台艺术精品创作扶持工程重点扶持剧目”.该剧中“油纸伞”无疑是最重要的道具,依伞设戏,情节新颖,结构巧妙,谱写了一曲美轮美奂、诗意盎然的传统戏曲乐歌.“油纸伞”的制作工艺十分巧妙.如图,伞圈D沿着伞柄滑动时,总有伞骨,,从而使得伞柄AP始终平分同一平面内两条伞骨所成的.为什么?
【提升1-3】如图,已知AB=AC,AD=AE,BD=CE,且B,D,E三点共线,求证:∠3=∠1+∠2.
【聚焦考点2】
全等三角形的判定2:边角边(SAS)
文字:在两个三角形中,如果有两条边及它们的夹角对应相等,那么这两个三角形全等;
图形:
符号:在与中,
“SAS”判定方法证明两个三角形全等及进行简单的应用.
1.证明线段相等或者角相等时,常常通过证明它们是全等三角形的对应边或对应角来解决.
2判断三角形全等时,注意两边与其中一边的对角相等的两个三角形不一定全等.解题时要根据已知条件的位置来考虑,只具备SSA时是不能判定三角形全等的.
【典例剖析2】
【典例2-1】如图,AD⊥AB,AE⊥AC,AD=AB,AE=AC,则判定△ADC≌△ABE的根据是____.
【典例2-2】(2021•洪山区期末)如图,在△ABC中,AB=6,BC=5,AC=4,AD平分∠BAC交BC于点D,在AB上截取AE=AC,则△BDE的周长为( )
针对训练2
【变式2-1】如图,把长短确定的两根木棍AB、AC的一端固定在A处,和第三根木棍BM摆出△ABC,木棍AB固定,木棍AC绕A转动,得到△ABD,这个实验说明( )
A.△ABC与△ABD不全等
B.有两边分别相等的两个三角形不一定全等
C.两边和它们的夹角分别相等的两个三角形全等
D.有两边和其中一边的对角分别相等的两个三角形不一定全等
【变式2-2】如图,已知AB⊥AC,AD⊥AE,AB=AC,AD=AE.
(1)求证△ADB≌△AEC;
(2)DB⊥EC.
【能力提升2】
【提升2-1】如图,点P是∠BAC平分线AD上的一点,AC=9,AB=5,PB=3,则PC的长可能是( )
A.6B.7C.8D.9
【提升2-2】如图,在中,是的中点,点在上,则图中全等三角形共有_____对.
【提升2-3】某中学计划为新生配备如图1所示的折叠凳,图2是折叠凳撑开后的侧面示意图(木条等材料宽度忽略不计),其中凳腿AB和CD的长度相等,O是它们的中点,为了使折叠凳坐着舒适,厂家将撑开后的折叠凳宽度AD设计为35cm,由以上信息能求出CB的长度吗?如果能,请求出CB的长度;如果不能,请说明理由.
【聚焦考点3】
全等三角形的判定3:角边角(ASA)
文字:在两个三角形中,如果有两个角及它们的夹边对应相等,那么这两个三角形全等;
图形:
符号:在与中,
全等三角形的判定4:角角边(AAS)
文字:在两个三角形中,如果有两个角及其中一个角的对边对应相等,那么这两个三角形全等;
图形:
符号:在与中,
1.方法总结:利用全等三角形可以解决线段之间的关系,比如线段的相等关系、和差关系等,解决问题的关键是运用全等三角形的判定与性质进行线段之间的转化.
2.全等三角形对应边上的高也相等.
【典例剖析3】
【典例3-1】如图,在△ABC和△DEF中,点A,E,B,D在同一条直线上,AC∥DF,AC=DF,且添加一个条件,不能判断△ABC≌△DEF的是( )
A.AE=DBB.∠C=∠FC.BC=EFD.∠ABC=∠DEF
【典例3-2】如图,已知BC=EF,AC∥DF,∠A=∠D.求证:△ACB≌△DFE.
【典例3-3】已知△ABC≌△DCE,且B、C、E三点在同一直线上,△ABC与△DCE在直线BE的同一侧,AC与BD交于点F,图中还有全等三角形吗?请写出来,并说明理由.
针对训练3
【变式3-1】如图,点B,E,C,F在一条直线上,∠A=∠D,∠B=∠DEF,BE=CF,求证:△ABC≌△DEF.
【变式3-2】如图,△ABC中,D是BC延长线上一点,满足CD=AB,过点C作CE∥AB,过点D作∠D=∠ACE,与CE交于点E,求证:△ABC≌△DCE.
【变式3-3】如图,已知△ABC和△EDC,点D在AB边上,若CD=CB,ED=AB,∠EDB=2∠CDB.求证:△ABC≌△EDC.
【能力提升3】
【提升3-1】.如图(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm.点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动.它们运动的时间为t(s).
(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,并判断此时线段PC和线段PQ的位置关系,请分别说明理由;
(2)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA=60°”,其他条件不变.设点Q的运动速度为xcm/s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;若不存在,请说明理由.
【提升3-2】已知:如图∠1=∠2,∠3=∠4,求证:△ABE≌△ADE.
【提升3-3】如图所示,传说在19世纪初,一位将军率领部队在一河边与敌军激战,为使炮弹准确地落在河对岸的敌军阵地,将军站在河这岸,将帽檐压低,使视线沿着帽檐恰好落在河对岸的边线上,然后他向后退(保证B′、B、C在一条直线上),一直退到视线落在河这岸的边线上为止,这时,他后退的距离就等于河宽,这是为什么?请给予证明.
专题15 暑假预习综合素质测评(含答案)【暑假预习课堂】新八年级数学同步精讲精练(人教版): 这是一份专题15 暑假预习综合素质测评(含答案)【暑假预习课堂】新八年级数学同步精讲精练(人教版),文件包含专题15暑假预习综合素质测评原卷版暑假预习课堂新八年级数学同步精讲精练人教版docx、专题15暑假预习综合素质测评解析版暑假预习课堂新八年级数学同步精讲精练人教版docx等2份试卷配套教学资源,其中试卷共26页, 欢迎下载使用。
专题14 最短路径问题(含答案)【暑假预习课堂】新八年级数学同步精讲精练(人教版): 这是一份专题14 最短路径问题(含答案)【暑假预习课堂】新八年级数学同步精讲精练(人教版),文件包含专题14最短路径问题原卷版暑假预习课堂新八年级数学同步精讲精练人教版docx、专题14最短路径问题解析版暑假预习课堂新八年级数学同步精讲精练人教版docx等2份试卷配套教学资源,其中试卷共31页, 欢迎下载使用。
专题11 画轴对称图形(含答案)【暑假预习课堂】新八年级数学同步精讲精练(人教版): 这是一份专题11 画轴对称图形(含答案)【暑假预习课堂】新八年级数学同步精讲精练(人教版),文件包含专题11画轴对称图形原卷版暑假预习课堂新八年级数学同步精讲精练人教版docx、专题11画轴对称图形解析版暑假预习课堂新八年级数学同步精讲精练人教版docx等2份试卷配套教学资源,其中试卷共35页, 欢迎下载使用。