所属成套资源:【高中数学一轮复习讲义】2025年高考数学知识点梳理+高频考点题型归纳+方法总结(新高考通用)
- 第11讲 对数与对数函数(精讲)-【一轮复习讲义】2025年高考数学高频考点题型归纳与方法总结(新高考通用) 试卷 7 次下载
- 第11练 对数与对数函数(精练:基础+重难点)-【一轮复习讲义】2025年高考数学高频考点题型归纳与方法总结(新高考通用) 试卷 6 次下载
- 第12练 函数的图像(精练:基础+重难点)-【一轮复习讲义】2025年高考数学高频考点题型归纳与方法总结(新高考通用) 试卷 6 次下载
- 第13讲 函数的应用和函数模型(精讲)-【一轮复习讲义】2025年高考数学高频考点题型归纳与方法总结(新高考通用) 试卷 6 次下载
- 第13练 函数的应用和函数模型(精练:基础+重难点)-【一轮复习讲义】2025年高考数学高频考点题型归纳与方法总结(新高考通用) 试卷 6 次下载
第12讲 函数的图像(精讲)-【一轮复习讲义】2025年高考数学高频考点题型归纳与方法总结(新高考通用)
展开这是一份第12讲 函数的图像(精讲)-【一轮复习讲义】2025年高考数学高频考点题型归纳与方法总结(新高考通用),文件包含第12讲函数的图像精讲原卷版docx、第12讲函数的图像精讲解析版docx等2份试卷配套教学资源,其中试卷共52页, 欢迎下载使用。
题型目录一览
一、知识点梳理
1.利用描点法作函数的图象
描点法作函数图象的基本步骤是列表、描点、连线,具体为:
(1)①确定函数的定义域;②化简函数的解析式;③讨论函数的性质(奇偶性、单调性、周期性、最值等).(2)列表(找特殊点:如零点、最值点、区间端点以及与坐标轴的交点等).(3)描点、连线.
2.利用图象变换法作函数的图象
(1)平移变换
提醒:“左加右减”只针对x本身,与x的系数无关,“上加下减”指的是在f (x)整体上加减.
(2)对称变换
①y=f (x)的图象eq \(―――――――→,\s\up7(关于x轴对称))y=-f (x)的图象;
②y=f (x)的图象eq \(――――――――→,\s\up7(关于y轴对称))y=f (-x)的图象;
③y=f (x)的图象eq \(―――――――――→,\s\up7(关于原点对称))y=-f (-x)的图象;
④y=ax(a>0且a≠1)的图象eq \(――――――――――→,\s\up7(关于直线y=x对称))y=lgax(a>0且a≠1)的图象.
(3)伸缩变换
①y=f (x)的图象
eq \(―――――――――――――――――――――――→,\s\up27(a>1,横坐标缩短为原来的\f(1,a),纵坐标不变,0<a<1,横坐标伸长为原来的\f(1,a)倍,纵坐标不变)) y=f (ax)的图象;
②y=f (x)的图象
eq \(――――――――――――――――――――――――――――――→,\s\up10(a>1,纵坐标伸长为原来的a倍,横坐标不变),\s\d10(0<a<1,纵坐标缩短为原来的a倍,横坐标不变))y=af (x)的图象.
(4)翻转变换
①y=f (x)的图象eq \(――――――――――――――――→,\s\up10(x轴下方部分翻折到上方),\s\d10(x轴及上方部分不变))y=|f (x)|的图象;
②y=f (x)的图象eq \(―――――――――――――――――――→,\s\up10(y轴右侧部分翻折到左侧),\s\d10(原y轴左侧部分去掉,右侧不变))y=f (|x|)的图象.
【常用结论】
1.函数图象自身的轴对称
(1)f (-x)=f (x)⇔函数y=f (x)的图象关于y轴对称;
(2)函数y=f (x)的图象关于x=a对称⇔f (a+x)=f (a-x)⇔f (x)=f (2a-x)⇔f (-x)=f (2a+x);
(3)若函数y=f (x)的定义域为R,且有f (a+x)=f (b-x),则函数y=f (x)的图象关于直线x=eq \f(a+b,2)对称.
2.函数图象自身的中心对称
(1)f (-x)=-f (x)⇔函数y=f (x)的图象关于原点对称;
(2)函数y=f (x)的图象关于(a,0)对称⇔f (a+x)=-f (a-x)⇔f (x)=-f (2a-x)⇔f (-x)=-f (2a+x);
(3)函数y=f (x)的图象关于点(a,b)成中心对称⇔f (a+x)=2b-f (a-x)⇔f (x)=2b-f (2a-x).
3.两个函数图象之间的对称关系
(1)函数y=f (a+x)与y=f (b-x)的图象关于直线x=eq \f(b-a,2)对称(由a+x=b-x得对称轴方程);
(2)函数y=f (x)与y=f (2a-x)的图象关于直线x=a对称;
(3)函数y=f (x)与y=2b-f (-x)的图象关于点(0,b)对称;
(4)函数y=f (x)与y=2b-f (2a-x)的图象关于点(a,b)对称.
二、题型分类精讲
刷真题 明导向
一、单选题
1.(2022·全国·统考高考真题)如图是下列四个函数中的某个函数在区间的大致图像,则该函数是( )
A.B.C.D.
2.(2021·浙江·统考高考真题)已知函数,则图象为如图的函数可能是( )
A.B.
C.D.
3.(2020·天津·统考高考真题)已知函数若函数恰有4个零点,则的取值范围是( )
A.B.
C.D.
题型一 作函数的图像
策略方法 作函数图象的两种常用方法
【典例1】已知.
(1)画函数的图象;
(2)若直线与的图象有4个不同的交点,求实数的取值范围以及所有交点横坐标之和.
【题型训练】
一、解答题
1.(1)画函数的图象,并写出单调增区间;
(2)函数有两个零点,求a的取值范围.
2.画函数图象:.
3.画函数图象
题型二 函数图像的辨识
策略方法 辨析函数图象的入手点
(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.
(2)从函数的奇偶性,判断图象的对称性.
(3)从函数的特征点,排除不合要求的图象.
(4)从函数的单调性,判断图象的变化趋势.
(5)从函数的周期性,判断图象的循环往复.
【典例1】如图,函数在区间上的图象大致为( )
A.B.
C.D.
【题型训练】
一、单选题
1.(甘肃省白银市靖远县2023届高三下学期第二次联考文科数学试题)函数的部分图像大致为( )
A.B.
C.D.
2.(海南省2023届高三学业水平诊断(三)数学试题)函数的大致图象是( )
A.B.
C.D.
3.(陕西省咸阳市2023届高三三模文科数学试题)已知函数的部分图象如图所示,则它的解析式可能是( )
A.B.
C.D.
4.(山东省烟台市2023届高考适应性练习(一)数学试题)函数的部分图象大致为( )
A.B.
C.D.
5.(2023年全国卷数学预测卷)函数在区间上的大致图象为( )
A.B.
C.D.
6.(湘豫名校联考2023届高三5月三模文科数学试题)函数的部分图象大致为( )
A.B.
C.D.
7.(2023年高三数学(理)押题卷四)函数的大致图像为( )
A.B.
C.D.
8.(重庆市2023届普高三模拟调研(三)数学试题)函数的图象大致为( )
A.B.
C.D.
9.(安徽省芜湖市2023届高三下学期5月教学质量统测数学试题)函数在区间的图像大致为( )
A.B.
C.D.
10.(河北省2023届高三模拟(一)数学试题)已知函数的部分图象如图所示,则的解析式可能为( )
A.B.
C.D.
11.(2023年高考数学(理)终极押题卷)函数的图象大致为( )
A.B.
C.D.
题型三 函数图像的应用
策略方法 1.利用函数图象研究不等式
当不等式问题不能用代数法直接求解但其与函数有关时,可将不等式问题转化为两函数图象(图象易得)的上、下关系问题,利用图象法求解.若函数为抽象函数,可根据题目画出大致图象,再结合图象求解.
2.利用函数图象研究方程根的个数
当方程与基本函数有关时,可以通过函数图象研究方程的根,方程f (x)=0的根就是f (x)的图象与x轴交点的横坐标,方程f (x)=g(x)的根是函数y=f (x)与函数y=g(x)图象的交点的横坐标.
【典例1】定义在上的函数满足,且当时,;当时,;当时,.若对,都有,则的取值范围是__________.
【典例2】对任意,恒有,对任意,现已知函数的图像与有4个不同的公共点,则正实数的值为__________.
【题型训练】
一、单选题
1.(陕西省榆林市神木中学2020-2021学年高三下学期第一次月考理科数学试题)已知,当时,函数的图象恒在轴下方,则的取值范围是( )
A.B.C.D.
2.(重庆市第八中学2023届高三上学期高考适应性月考(四)数学试题)已知函数,若,则实数的取值范围是( )
A.B.C.D.[0,1]
3.(2023·全国·高三专题练习)已知函数,若关于的方程恰有5个不同的实根,则的取值范围为( )
A.B.C.D.
4.(江西省赣州市2023届高三二模数学(文)试题)定义在上的偶函数满足,且,关于的不等式的整数解有且只有个,则实数的取值范围为( )
A.B.C.D.
5.(2023年普通高等学校招生全国统一考试数学押题卷(三))已知函数,若不等式有3个整数解,则实数a的取值范围为( )
A.B.
C.D.
6.(2023春·贵州·高三校联考阶段练习)已知函数的图象上恰有3对关于原点成中心对称的点,则实数的取值范围是( )
A.B.
C.D.
7.(2023·江西·南昌县莲塘第一中学校联考二模)已知,函数,若关于x的方程有6个解,则的取值范围为( )
A.B.C.D.
8.(2023·天津红桥·统考一模)函数,关于的方程有2个不相等的实数根,则实数a的取值范围是( )
A.B.
C.D.
9.(2023·陕西宝鸡·校考模拟预测)已知函数,若关于x的方程有三个互不相等的实根,则实数k的取值范围是( )
A.B.
C.D.
10.(山东省青岛市即墨区2022-2023学年高三下学期教学质量检测数学试题)函数的定义域为,满足,且当时,.若对任意,都有,则的最大值是( )
A.B.C.D.
11.(2023春·天津和平·高三天津一中校考阶段练习)已知函数,的定义域为,,若,且,则关于x的方程有两解时,实数a的取值范围为( )
A.B.
C.D.
12.(2023·全国·高三专题练习)已知定义在上的函数是偶函数,当时,,若关于的方程有且仅有个不同实数根,则实数的取值范围是( )
A.B.
C.D.
二、填空题
13.(2023·全国·高三专题练习)已知四个函数:(1),(2),(3),(4),从中任选个,则事件“所选个函数的图象有且仅有一个公共点”的概率为___________.
14.(上海市2023届高三上学期二模暨秋考模拟数学试题)已知函数,则不等式的解集是___________.
15.(河南省许济洛平2022-2023学年高三第三次质量检测文科数学试题)定义在R上的函数满足,且当时,.若对任意,都有,则t的取值范围是__________.
16.(2022秋·辽宁本溪·高三本溪高中校考期中)已知函数,若互不相等,且,则的取值范围为__________________.
17.(2023春·上海嘉定·高三上海市育才中学校考阶段练习)已知函数,若方程恰好有四个实根,则实数k的取值范围是___.
18.(2023届高三上学期一轮复习联考(一)全国卷文科数学试题)已知函数,若不等式的解集中恰有两个非负整数,则实数k的取值范围为______________.
19.(2023·北京西城·统考二模)已知直线和曲线,给出下列四个结论:
①存在实数和,使直线和曲线没有交点;
②存在实数,对任意实数,直线和曲线恰有个交点;
③存在实数,对任意实数,直线和曲线不会恰有个交点;
④对任意实数和,直线和曲线不会恰有个交点.
其中所有正确结论的序号是____.
①作函数的图像
②函数图像的辨识
③函数图像的应用
相关试卷
这是一份高考数学高频考点题型归纳与方法(新高考通用)第12讲函数的图像(精讲)(原卷版+解析),共52页。试卷主要包含了知识点梳理,题型分类精讲等内容,欢迎下载使用。
这是一份第42讲 直线与椭圆(精讲)-【一轮复习讲义】2025年高考数学高频考点题型归纳与方法总结(新高考通用),文件包含第42讲直线与椭圆精讲原卷版docx、第42讲直线与椭圆精讲解析版docx等2份试卷配套教学资源,其中试卷共134页, 欢迎下载使用。
这是一份第30讲 数列求和(精讲)-【一轮复习讲义】2025年高考数学高频考点题型归纳与方法总结(新高考通用),文件包含第30讲数列求和精讲原卷版docx、第30讲数列求和精讲解析版docx等2份试卷配套教学资源,其中试卷共103页, 欢迎下载使用。