所属成套资源:【高中数学一轮复习讲义】2025年高考数学知识点梳理+高频考点题型归纳+方法总结(新高考通用)
- 第33讲 空间直线、平面的平行(精讲)-【一轮复习讲义】2025年高考数学高频考点题型归纳与方法总结(新高考通用) 试卷 5 次下载
- 第33练 空间直线、平面的平行(精练:基础+重难点)-【一轮复习讲义】2025年高考数学高频考点题型归纳与方法总结(新高考通用) 试卷 5 次下载
- 第34练 空间直线、平面的垂直(精练:基础+重难点)-【一轮复习讲义】2025年高考数学高频考点题型归纳与方法总结(新高考通用) 试卷 5 次下载
- 第35讲 空间向量的运算及其坐标表示(精讲)-【一轮复习讲义】2025年高考数学高频考点题型归纳与方法总结(新高考通用) 试卷 6 次下载
- 第35练 空间向量的运算及其坐标表示(精练:基础+重难点)-【一轮复习讲义】高考数学高频考点题型归纳与方法总结(新高考通用) 试卷 5 次下载
第34讲 空间直线、平面的垂直(精讲)-【一轮复习讲义】2025年高考数学高频考点题型归纳与方法总结(新高考通用)
展开这是一份第34讲 空间直线、平面的垂直(精讲)-【一轮复习讲义】2025年高考数学高频考点题型归纳与方法总结(新高考通用),文件包含第34讲空间直线平面的垂直精讲原卷版docx、第34讲空间直线平面的垂直精讲解析版docx等2份试卷配套教学资源,其中试卷共92页, 欢迎下载使用。
题型目录一览
一、知识点梳理
一、直线与平面垂直的定义
如果一条直线和这个平面内的任意一条直线都垂直,那称这条直线和这个平面相互垂直.
二、判定定理
三、性质定理
四、平面与平面垂直
如果两个相交平面的交线与第三个平面垂直,又这两个平面与第三个平面相交所得的两条交线互相垂直.(如图所示,若,且,则)
一般地,两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直.
五、判定定理
六、性质定理
【常用结论】
1.证明线线垂直的方法
①等腰三角形底边上的中线是高;
②勾股定理逆定理;
③菱形对角线互相垂直;
④直径所对的圆周角是直角;
⑤向量的数量积为零;
⑥线面垂直的性质;
⑦平行线垂直直线的传递性().
2.证明线面垂直的方法
①线面垂直的定义;
②线面垂直的判定();
③面面垂直的性质();
平行线垂直平面的传递性();
⑤面面垂直的性质().
3.证明面面垂直的方法
①面面垂直的定义;
②面面垂直的判定定理().
二、题型分类精讲
题型一 垂直性质的简单判定
策略方法
此类问题可以转化为一个正方体的棱、面等,进而进行排除.
【典例1】(单选题)若l为一条直线,为三个互不重合的平面,则下列命题正确的是( )
A.B.若
C.D.若
【题型训练】
一、单选题
1.若、是两个不重合的平面,
①若内的两条相交直线分别平行于内的两条直线,则;
②设、相交于直线,若内有一条直线垂直于,则;
③若外一条直线与内的一条直线平行,则;
以上说法中成立的有( )个.
A.0B.1C.2D.3
2.已知,是两条不同的直线,,是两个不同的平面,有以下四个命题:
①若∥,,则∥, ②若,,则,
③若,,则∥, ④若,,,则
其中正确的命题是( )
A.②③B.②④C.①③D.①②
3.已知,,是3条不同的直线,,,是3个不同的平面,则下列命题中正确的是( )
A.若,,则
B.若,,,则
C.若,,则
D.若,,则
4.设,,是三条不同的直线,,,是三个不同的平面,有下列命题中,真命题为( )
A.若,,则
B.若,,则
C.若,,,则
D.若,,则
5.设,,是三条不同的直线,,,是三个不同的平面,有下列命题中,真命题为( )
A.若,,则B.若,,则
C.若,,则D.若,,则
6.设是两条不同的直线,是两个不同的平面,则下列说法正确的是( )
A.若,则
B.若,则
C.若,则
D.若,则
7.下列命题中,不正确的是( )
A.夹在两个平行平面间的平行线段相等
B.三个两两垂直的平面的交线也两两垂直
C.若直线平面,,则过点且平行于直线的直线有无数条,且一定在内
D.已知m,n为异面直线,平面,平面,若直线满足,,,,则与相交,且交线平行于
8.已知,,是三条不同的直线,,是两个不同的平面,且,,,,则下列命题错误的是( )
A.若,则B.若,则
C.若,则D.若,则
二、多选题
9.已知,为不同的直线,,为不同的平面,则下列说法错误的是( )
A.若,,,则B.若,,,则
C.若,,,则D.若,,,则
10.设,是两条不同的直线,,是两个不同的平面,下列说法正确的是( )
A.若,,则B.若,,则
C.若,,则D.若,,则
11.设,是两条不同的直线,,是两个不同的平面,给出下列命题,其中正确的命题为( )
A.若,,则B.若,,,则
C.若,,则D.若,,则
12.已知是两条不重合的直线,是两个不重合的平面,下列命题不正确的是( )
A.若,,,,则
B.若,,,则
C.若,,,则
D.若,,,则
三、填空题
13.给出下列四个命题:
①若直线垂直于平面内的两条直线,则这条直线与平面垂直;
②若直线与平面内的任意一条直线都垂直,则这条直线与平面垂直;
③若直线垂直于梯形的两腰所在的直线,则这条直线垂直于两底边所在的直线;
④若直线垂直于梯形的两底边所在的直线,则这条直线垂直于两腰所在的直线.
其中正确的命题共有 个.
14.已知是两个不同的平面,是平面及之外的两条不同的直线,给出下列四个论断:
①;②;③;④.
以其中三个论断作为条件,余下一个论断作为结论,写出你认为正确的一个命题: .(用序号表示)
题型二 线面垂直的判定
策略方法 判定线面垂直的四种方法
【典例1】如图,在正方体中,E,F分别是棱,的中点,求证:平面EAB.
【题型训练】
一、解答题
1.如图所示,在四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,点E在线段PC上,PC⊥平面BDE. 证明:BD⊥平面PAC
2.如图,在四棱锥中,底面ABCD是梯形,,且,,.
(1)若F为PA的中点,求证平面PCD
(2)求证平面PCD.
3.如图,在四棱锥中,平面,底面为菱形,为的中点.
(1)求证:平面;
(2)若点是棱的中点,求证:平面.
4.如图,在四棱锥中,底面ABCD为正方形,底面ABCD,,E为线段PB的中点,F为线段BC的中点.
(1)证明:平面PBC;
(2)求点P到平面AEF的距离.
5.如图,在四棱锥中,,,,,,平面平面.证明:平面
6.如图,在底面是矩形的四棱锥中,底面,,分别是,的中点.
(1)若,求四棱锥的体积;
(2)求证:平面.
7.如图,PA是圆柱的母线,AB是底面圆的直径,C是底面圆周上异于A.B的一点,且.
(1)求证:平面PAC
(2)若M是PC的中点,求三棱锥的体积.
8.已知的斜边为AB,过点A作PA⊥平面ABC,AM⊥PB于M,AN⊥PC于N.求证:
(1)BC⊥平面PAC;
(2)PB⊥平面AMN.
9.如图,在三棱柱中,平面ABC,D,E分别为AC,的中点,,.
(1)求证:平面;
(2)求点D到平面ABE的距离.
10.如图四棱锥中,四边形为等腰梯形,,平面平面,,,,.
(1)证明:平面;
(2)若在线段上,且,求三棱锥的体积.
11.如图所示,在长方体中,AB=2,BC=2,,M为棱上一点.
(1)若,求异面直线和所成角的正切值;
(2)若,求证BM⊥平面.
12.如图,在三棱锥中,分别为的中点,,且,.求证:平面.
13.如图,在四棱柱中,底面ABCD为平行四边形,,∠BAD=60°,平面平面ABCD,,,E为上的一点.
(1)求证:平面;
(2)若平面BDE,求三棱锥的体积.
14.如图,在直三棱柱中,,,,为棱的中点.
(1)求证:平面;
(2)若,求三棱锥的体积.
15.如图,在三棱锥中,侧面底面,且的面积为6.
(1)求三棱锥的体积;
(2)若,且为锐角,求证:平面.
16.如图1,在五边形中,四边形为正方形,,,如图2,将沿折起,使得至处,且.
(1)证明:平面;
(2)若四棱锥的体积为4,求的长.
17.如图,在四棱锥,底面为梯形,且,,等边三角形所在的平面垂直于底面,.求证:平面;
18.如图,四棱锥中,平面平面,为的中点,为的中点,且,,.证明:平面
19.如图所示的长方体中,底面是边长为2的正方形,O为与的交点,,M是线段的中点.
(1)求证:平面;
(2)求证:平面.
20.在图1中,为等腰直角三角形,,,为等边三角形,为AC边的中点,E在BC边上,且,沿AC将进行折叠,使点D运动到点F的位置,如图2,连接FO,FB,FE,OE,使得.
(1)证明:平面ABC;
(2)求点到平面的距离.
题型三 线线垂直的判定
策略方法
【典例1】如图,四棱锥的底面是矩形,平面,E,F分别的中点,且.
(1)求证:平面;
(2)求证:.
【题型训练】
一、解答题
1.如图,在四棱锥中,是边长为4的等边三角形,平面平面,,,,.
(1)证明;;
(2)求三棱锥的体积.
2.如图,四棱锥中,四边形ABCD为梯形,,,,,,M,N分别是PD,PB的中点.
(1)求证:直线平面;
(2)求证:.
3.如图,矩形所在的平面与平面垂直,且.已知.
(1)求证:;
(2)求四棱锥的表面积.
4.如图,已知三棱柱中,,,,是的中点,是线段上一点.
(1)求证:;
(2)设是棱上的动点(不包括边界),当的面积最小时,求棱锥的体积.
5.如图,在三棱柱中,中,,在平面上的射影为的中点.
(1)证明:.
(2)求多面体的体积.
6.如图所示,在直四棱柱中,,,且是的中点.
(1)证明:;
(2)若,求四棱柱的体积.
7.在三棱台中,,分别是,的中点,,平面,且,.
(1)求证:;
(2)求三棱锥的体积.
8.如图,在梯形中,,,,为边上的点,,,将沿直线翻折到的位置,且,连接.
(1)证明:;
(2)求点到平面的距离.
9.如图,在多面体中,四边形是边长为的菱形,,平面,平面,.
(1)证明:;
(2)若三棱锥的体积为,求实数的值.
10.在直三棱柱中,侧面为正方形,,,分别为和的中点,.
(1)证明:;
(2)求到平面的距离.
题型四 面面垂直的判定
策略方法 证明面面垂直的两种方法
【典例1】如图,已知平面,为矩形,分别为的中点.
(1)证明:;
(2)若,求证:平面平面.
【题型训练】
一、解答题
1.如图,四棱锥的底面是矩形,底面,,,.
(1)证明:平面平面;
(2)求及三棱锥的体积.
2.如图,在底面为矩形的四棱锥中,底面ABCD.
(1)证明:平面平面PCD.
(2)若,,E在棱AD上,且,求四棱锥的体积.
3.如图,在四棱锥P-ABCD中,四边形ABCD是菱形,PA=PC,E为PB的中点.求证:
(1)平面AEC;
(2)平面AEC⊥平面PBD.
4.如图,在四棱锥中,四边形为正方形,点在平面内的射影为A,且,为中点.
(1)证明:平面
(2)证明:平面平面.
5.如图,已知四棱锥P-ABCD中,PD⊥平面ABCD,底面ABCD为直角梯形,AD⊥CD,,CD=2AB.
(1)求证:平面PAB⊥平面PAD;
(2)在侧棱PC上是否存在点M,使得平面PAD,若存在,确定点M位置;若不存在,说明理由.
6.如图,在四棱锥P﹣ABCD中,PD⊥平面ABCD,底面ABCD是正方形,AC与BD交于点O,E为PB的中点.
(1)求证:EO平面PDC;
(2)求证:平面PAC⊥平面PBD.
7.如图,在四棱锥中,,平面平面ABCD,E,F分别为棱PD,AD的中点,.
(1)求证:平面平面PAD;
(2)若,求几何体PABCEF的体积.
8.如图,在中,,,D是线段AC上靠近点A的三等分点,现将沿直线BD折成,且使得平面平面CBD.
(1)证明:平面平面PCB;
(2)求点B到平面PCD的距离.
9.如图,在四棱锥中,底面为正方形,底面,为的中点,为线段上的点,且.
(1)求证:平面平面;
(2)求点到平面的距离.
10.在四棱锥Q-ABCD中,底面ABCD是正方形,若,,.
(1)证明:平面⊥平面;
(2)求四棱锥的体积与表面积.
11.《九章算术》中记录的“羡除”是算学和建筑学术语,指的是一个类似隧道形状的几何体.如图,在羡除中,底面是边长为2的正方形,.
(1)证明:平面平面.
(2)求四棱锥的体积.
12.在四棱锥中,,,,,为等边三角形,.
(1)证明:平面平面PBC;
(2)求点C到平面PAB的距离.
13.如图,在四棱锥中,底面四边形为矩形,平面平面,,,,点为的中点.
(1)求证:平面平面;
(2)求二面角的余弦值.
14.多面体ABCDEF如图所示,正方形ABCD和直角梯形ACEF所在的平面互相垂直,,,.
(1)求证:平面平面DEF;
(2)求该多面体的体积.
①垂直性质的简单判定
②线面垂直的判定
③线线垂直的判定
④面面垂直的判定
文字语言
图形语言
符号语言
判断定理
一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直
面⊥面⇒线⊥面
两个平面垂直,则在一个平面内垂直于交线的直线与另一个平面垂直
_
_
a
平行与垂直的关系
一条直线与两平行平面中的一个平面垂直,则该直线与另一个平面也垂直
_
平行与垂直的关系
两平行直线中有一条与平面垂直,则另一条直线与该平面也垂直
_
b
_
a
文字语言
图形语言
符号语言
性质定理
垂直于同一平面的两条直线平行
_
b
_
a
文字语言
图形语言
符号语言
垂直与平行的关系
垂直于同一直线的两个平面平行
_
线垂直于面的性质
如果一条直线垂直于一个平面,则该直线与平面内所有直线都垂直
文字语言
图形语言
符号语言
判定定理
一个平面过另一个平面的垂线,则这两个平面垂直
_
文字语言
图形语言
符号语言
性质定理
两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直
_
_
a
相关试卷
这是一份第47讲 随机抽样(精讲)-【一轮复习讲义】2025年高考数学高频考点题型归纳与方法总结(新高考通用),文件包含第47讲随机抽样精讲原卷版docx、第47讲随机抽样精讲解析版docx等2份试卷配套教学资源,其中试卷共42页, 欢迎下载使用。
这是一份第42讲 直线与椭圆(精讲)-【一轮复习讲义】2025年高考数学高频考点题型归纳与方法总结(新高考通用),文件包含第42讲直线与椭圆精讲原卷版docx、第42讲直线与椭圆精讲解析版docx等2份试卷配套教学资源,其中试卷共134页, 欢迎下载使用。
这是一份第34练 空间直线、平面的垂直(精练:基础+重难点)-【一轮复习讲义】2025年高考数学高频考点题型归纳与方法总结(新高考通用),文件包含第34练空间直线平面的垂直精练基础+重难点原卷版docx、第34练空间直线平面的垂直精练基础+重难点解析版docx等2份试卷配套教学资源,其中试卷共130页, 欢迎下载使用。