- 第52练 随机事件的概率与古典概型(精练:基础+重难点)【一轮复习讲义】2025年高考数学高频考点题型归纳与方法总结(新高考通用) 试卷 5 次下载
- 第53讲 事件的独立性、条件概率和全概率公式(精讲)【一轮复习讲义】2025年高考数学高频考点题型归纳与方法总结(新高考通用) 试卷 5 次下载
- 第54讲 离散型随机变量及其分布列、均值与方差(精讲)【一轮复习讲义】2025年高考数学高频考点题型归纳与方法总结(新高考通用) 试卷 5 次下载
- 第54练 离散型随机变量及其分布列、均值与方差(精练)【一轮复习讲义】2025年高考数学高频考点题型归纳与方法总结(新高考通用) 试卷 5 次下载
- 第55讲 二项分布、超几何分布与正态分布(精讲)【一轮复习讲义】2025年高考数学高频考点题型归纳与方法总结(新高考通用) 试卷 5 次下载
第53练 事件的独立性、条件概率和全概率公式(精练)【一轮复习讲义】2025年高考数学高频考点题型归纳与方法总结(新高考通用)
展开刷真题 明导向
一、单选题
1.(2022·全国·统考高考真题)某棋手与甲、乙、丙三位棋手各比赛一盘,各盘比赛结果相互独立.已知该棋手与甲、乙、丙比赛获胜的概率分别为,且.记该棋手连胜两盘的概率为p,则( )
A.p与该棋手和甲、乙、丙的比赛次序无关B.该棋手在第二盘与甲比赛,p最大
C.该棋手在第二盘与乙比赛,p最大D.该棋手在第二盘与丙比赛,p最大
2.(2023·全国·统考高考真题)某地的中学生中有的同学爱好滑冰,的同学爱好滑雪,的同学爱好滑冰或爱好滑雪.在该地的中学生中随机调查一位同学,若该同学爱好滑雪,则该同学也爱好滑冰的概率为( )
A.0.8B.0.6C.0.5D.0.4
二、解答题
3.(2023·北京·统考高考真题)为研究某种农产品价格变化的规律,收集得到了该农产品连续40天的价格变化数据,如下表所示.在描述价格变化时,用“+”表示“上涨”,即当天价格比前一天价格高;用“-”表示“下跌”,即当天价格比前一天价格低;用“0”表示“不变”,即当天价格与前一天价格相同.
用频率估计概率.
(1)试估计该农产品价格“上涨”的概率;
(2)假设该农产品每天的价格变化是相互独立的.在未来的日子里任取4天,试估计该农产品价格在这4天中2天“上涨”、1天“下跌”、1天“不变”的概率;
(3)假设该农产品每天的价格变化只受前一天价格变化的影响.判断第41天该农产品价格“上涨”“下跌”和“不变”的概率估计值哪个最大.(结论不要求证明)
4.(2022·全国·统考高考真题)在某地区进行流行病学调查,随机调查了100位某种疾病患者的年龄,得到如下的样本数据的频率分布直方图:
(1)估计该地区这种疾病患者的平均年龄(同一组中的数据用该组区间的中点值为代表);
(2)估计该地区一位这种疾病患者的年龄位于区间的概率;
(3)已知该地区这种疾病的患病率为,该地区年龄位于区间的人口占该地区总人口的.从该地区中任选一人,若此人的年龄位于区间,求此人患这种疾病的概率.(以样本数据中患者的年龄位于各区间的频率作为患者的年龄位于该区间的概率,精确到0.0001).
三、双空题
5.(2023·天津·统考高考真题)甲乙丙三个盒子中装有一定数量的黑球和白球,其总数之比为.这三个盒子中黑球占总数的比例分别为.现从三个盒子中各取一个球,取到的三个球都是黑球的概率为 ;将三个盒子混合后任取一个球,是白球的概率为 .
6.(2022·天津·统考高考真题)52张扑克牌,没有大小王,无放回地抽取两次,则两次都抽到A的概率为 ;已知第一次抽到的是A,则第二次抽取A的概率为
【A组 在基础中考查功底】
一、单选题
1.某个班级名学生中,有男生名,女生名,男生中有名团员,女生中有名团员.在该班随机选取名学生,在选到的是团员的条件下,选到的是男生的概率为( )
A.B.C.D.
2.某防空导弹系统包含3辆防空导弹发射车,其中8联装,6联装,4联装防空导弹发射车各1辆,当警戒雷达车发现敌机后通知指挥车,指挥车指挥防空导弹发射车发射导弹,每次只选择1辆防空导弹发射车.已知指挥车指挥8联装,6联装,4联装防空导弹发射车发射导弹的概率分别为0.5,0.3,0.2,且8联装,6联装,4联装防空导弹发射车命中敌机的概率分别为0.8,0.6,0.4.在某次演习中警戒雷达车发现一架敌机,则此防空导弹系统发射导弹命中敌机的概率为( )
A.0.66B.0.58C.0.45D.0.34
3.某产品在出厂时每5个一等品装成一箱,工人不小心把2件二等品和3件一等品装入了一箱,为找出该箱中的二等品,需要对该箱中的产品逐一取出检验,取出的产品不放回,则“所有二等品被取出时恰取出3件产品检验”的概率为( )
A.B.C.D.
4.厦门地铁1号线从镇海路站到文灶站有5个站点.甲、乙同时从镇海路站上车,假设每一个人自第二站开始在每个站点下车是等可能的,则甲乙在不同站点下车的概率为( )
A.B.C.D.
5.2023年3月13日第十四届全国人民代表大会第一次会议在北京胜利闭幕,某中学为了贯彻学习“两会”精神,举办“学两会,知国事”知识竞赛.高二学生代表队由,,,,共5名成员组成,现从这5名成员中随机抽选3名参加学校决赛,则在学生被抽到的条件下,学生也被抽到的概率为( )
A.B.C.D.
6.现有10名北京冬奥会志愿者,其中2名女志愿者和8名男志愿者,从中随机地接连抽取3名(每次取一个),派往参与花样滑冰项目的志愿者服务.则“恰有一名女志愿者”的概率是( )
A.B.C.D.
7.分别抛掷两枚质地均匀的硬币,设“第一枚正面朝上”为事件A,“第二枚反面朝上”为事件,“两枚硬币朝上的面相同”为事件,则 ( )
A.B.事件A与事件相互独立
C.事件与事件对立D.事件A与事件互斥
8.一道考题有4个答案,要求学生将其中的一个正确答案选择出来.某考生知道正确答案的概率为,在乱猜时,4个答案都有机会被他选择,若他答对了,则他确实知道正确答案的概率是( )
A.B.C.D.
9.任意抛掷一枚质地均匀的骰子一次,观察其出现的基本结果,定义事件:,事件:,事件:,则下列判断正确的是( )
A.B.
C.D.事件A,B相互独立
10.英国数学家贝叶斯(1701-1763)在概率论研究方面成就显著,创立了贝叶斯统计理论,对于统计决策函数、统计推断等做出了重要贡献.根据贝叶斯统计理论,事件,,(的对立事件)存在如下关系:.若某地区一种疾病的患病率是,现有一种试剂可以检验被检者是否患病,已知该试剂的准确率为,即在被检验者患病的前提下用该试剂检测,有的可能呈现阳性,该试剂的误报率为,即在被检验者未患病的情况下用该试剂检测,有5%的可能会误报阳性.现随机抽取该地区的一个被检验者,用该试剂来检验,结果呈现阳性的概率为( )
A.B.C.D.
11.一道考题有4个,要求学生将其中的一个正确选择出来.某考生知道正确的概率为,而乱猜正确的概率为.在乱猜时,4个都有机会被他选择,如果他答对了,则他确实知道正确的概率是( )
A.B.
C.D.
12.甲、乙两盒中各放有除颜色外其余均相同的若干个球,其中甲盒中有4个红球和2个白球乙盒中有2个红球和3个白球,现从甲盒中随机取出1球放入乙盒,再从乙盒中随机取出球.记“从甲盒中取出的球是红球”为事件A,“从甲盒中取出的球是白球”为事件B,“从乙盒中取出的球是红球”为事件C,则下列结论错误的是( )
A.A与B互斥B.
C.A与C独立D.
13.已知某公路上经过的货车与客车的数量之比为2:1,货车和客车中途停车修理的概率分别为0.02,0.01,今有一辆汽车中途停车修理,则该汽车是货车的概率为( )
A.0.2B.0.8C.0.3D.0.7
14.有张奖券,其中张可以中奖,现有个人从中不放回地依次各随机抽取一张,设每张奖券被抽到的可能性相同,记事件“第个人抽中中奖券”,则下列结论正确的是( )
A.事件与互斥B.
C.D.
15.某校高二年级组织春游,已知该校1~8班每班30人,9~20班每班40人,且1~8班前往“庐山”景区,9~20班前往“武功山”景区.若游客对“庐山”景区的满意度为,对“武功山”景区的满意度为,现从该校随机抽取一名高二学生,则对所游景区感到满意的概率为( )
A.B.C.D.
16.已知事件A、B是相互独立事件,、分别是A、B的对立事件,那么下列等式中不一定成立的是( )
A.
B.
C.
D.
17.为弘扬社会主义核心价值观,传承中华优秀文化,某县举行“诵读经典,相约论语”的诵读活动某校初步推选出甲乙名教师和名学生共名朗诵爱好者,并从中随机选取名组成学校代表队参加汇报演出,则代表队中既有教师又有学生的条件下,教师甲被选中的概率为( )
A.B.C.D.
二、多选题
18.甲罐中有5个红球,5个白球,乙罐中有3个红球,7个白球.先从甲罐中随机取出一球放入乙罐,再从乙罐中随机取出一球.表示事件“从甲罐取出的球是红球”,表示事件“从甲罐取出的球是白球”,B表示事件“从乙罐取出的球是红球”.则下列结论正确的是( )
A.、为对立事件B.
C.D.
19.箱子中有6个大小、材质都相同的小球,其中4个红球,2个白球.每次从箱子中随机的摸出一个球,摸出的球不放回.设事件A表示“第1次摸球,摸到红球”,事件B表示“第2次摸球,摸到红球”则下列结论正确的是( )
A.B.
C.D.
20.已知某地区有小学生人,初中生人,高中生人,当地教育部门为了了解本地区中小学生的近视率,按小学生、初中生、高中生进行分层抽样,抽取一个容量为的样本,得到小学生,初中生,高中生的近视率分别为,,.下列说法中正确的有( )
A.从高中生中抽取了人B.每名学生被抽到的概率为
C.估计该地区中小学生总体的平均近视率为 53%D.估计高中学生的近视人数约为
21.下列描述正确的是( )
A.若事件A,B满足,则A与B是对立事件
B.若,,,则事件A与B相互独立
C.掷两枚质地均匀的骰子,“第一枚出现奇数点”与“第二枚出现偶数点”不是互斥事件
D.一个袋子中有2个红球,3个绿球,采用不放回方式从中依次随机地取出两球,第二次取到红球的概率是
22.已知随机事件A,B发生的概率分别为,,下列说法正确的有( )
A.若,则
B.若,则A,B相互独立
C.若A,B不相互独立,则
D.若,则
23.在某一季节,疾病D1的发病率为2%,病人中40%表现出症状S,疾病D2的发病率为5%,其中18%表现出症状S,疾病D3的发病率为0.5%,症状S在病人中占60%.则( )
A.任意一位病人有症状S的概率为0.02
B.病人有症状S时患疾病D1的概率为0.4
C.病人有症状S时患疾病D2的概率为0.45
D.病人有症状S时患疾病D3的概率为0.25
24.英国数学家贝叶斯在概率论研究方面成就显著,根据贝叶斯统计理论,随机事件、存在如下关系:.某高校有甲、乙两家餐厅,王同学第一天去甲、乙两家餐厅就餐的概率分别为0.4和0.6.如果他第一天去甲餐厅,那么第二天去甲餐厅的概率为0.6;如果第一天去乙餐厅,那么第二天去甲餐厅的概率为0.5,则王同学( )
A.第二天去甲餐厅的概率为0.54
B.第二天去乙餐厅的概率为0.44
C.第二天去了甲餐厅,则第一天去乙餐厅的概率为
D.第二天去了乙餐厅,则第一天去甲餐厅的概率为
三、填空题
25.端午节是我国传统节日,甲,乙,丙3人端午节来常州旅游,若甲、乙2人中至少有1人来常州旅游的概率是,丙来常州旅游的概率是,假定3人的行动相互之间没有影响,那么这段时间内甲,乙,丙3人中至少有1人来常州旅游的概率为 .
26.已知事件发生的概率为,事件发生的概率为,若在事件发生的条件下,事件发生的概率为,则在事件发生的条件下,事件发生的概率为 .
27.抛掷一粒骰子,设“得到的点数是奇数”为事件,“得到的点数是3点”为事件,则 .
28.某同学连续两天在学校信息图文中心2楼和3楼进行拓展阅读,第一天等可能地从信息图文中心2楼和3楼中选择一层楼进行阅读.如果第一天去2楼的条件下第二天还在2楼阅读的概率为0.7;第一天去3楼的条件下第二天去2楼阅读的概率为0.8,该同学第二天去3楼阅读的概率为 .
29.播种用的一等品种子中混合2.0%的二等种子,1.5%的三等种子,1.0%的四等种子,用一等、二等、三等、四等种子长出优质产品的概率分别为0.5,0.15,0.1,0.05,则从这批种子中任选一颗长出优质产品的概率为 .
30.设某公路上经过的货车与客车的数量之比为,货车中途停车修理的概率为,客车为.今有一辆汽车中途停车修理,该汽车是货车的概率为 .
31.2022年卡塔尔世界杯是第二十二届世界杯足球赛,某支深受大家喜爱的足球队在对球员的使用上进行数据分析,根据以往的数据统计,A运动员能够胜任中锋、边锋及前腰三个位置,且出场率分别为0.3,0.5,0.2,当该运动员担当中锋、边锋及前腰时,球队输球的概率依次为0.3,0.2,0.2.当A球员参加比赛时,该球队某场比赛不输球的概率为 .
32.李老师一家要外出游玩几天,家里有一盆花交给邻居帮忙照顾,如果这几天内邻居记得浇水,那么花存活的概率为0.8,如果这几天内邻居忘记浇水,那么花存活的概率为0.3,假设李老师对邻居不了解,即可以认为邻居记得和忘记浇水的概率均为0.5,几天后李老师回来发现花还活着,则邻居记得浇水的概率为 .
33.在三个地区爆发了甲流,这三个地区分别有3%,4%,5%的人患了甲流,假设这三个地区的人口比例为5:8:7,现从这三个地区中任意选取一个人,则这个人患甲流的概率为 .
34.某足球队共有30名球员练习点球,其中前锋6人,中场16人,后卫8人.若前锋点球进门的概率均是0.9,中场点球进门的概率均是0.8,后卫点球进门的概率均是0.7,则任选一名球员点球进门的概率是 .(结果保留两位小数)
35.最近网上比较火的“挖呀挖黄老师”的歌词中“种什么样的种子开什么样的花”,假设种小小的种子开小小的花的概率为0.9,种大大的种子开大大的花的概率为0.8.现袋子中有10颗种子,其中有6颗小小的种子和4颗大大的种子,每颗种子只能开小小的花或大大的花,那么取出一颗种子开出小小的花的概率为 .
36.A,B,C,D,E共5位教师志愿者被安排到甲、乙、丙、丁4所学校参加支教活动,要求每所学校至少安排一位教师志愿者,且每位教师志愿者只能到一所学校支教,在A教师志愿者被安排到甲学校支教的前提下,甲学校有两名教师志愿者的概率为 .
37.甲罐中有2个红球、3个白球,乙罐中有4个红球、1个白球,先从甲罐中随机取出1个球放入乙罐,再从乙罐中随机取出1个球,则从乙罐中取出的球是红球的概率为 .
四、解答题
38.已知男性中有患色盲,女性中有患色盲,从100个男人和100个女人中任选一人,设“任选一人是男人”为事件,“任选一人是女人”为事件“任选一人患色盲”为事件.
(1)求此人患色盲的概率;
(2)如果此人患色盲,求此人是男性的概率.
39.设某厂有甲、乙、丙三个车间生产同一种产品,已知各车间的产量分别占全厂产量的25%,35%,40%,并且各车间的次品率依次为5%,4%,2%.现从该厂这批产品中任取一件.
(1)求取到次品的概率;
(2)若取到的是次品,则此次品由三个车间生产的概率分别是多少?
40.某班从6名班干部(其中男生4人,女生2人)中,任选3人参加学校的义务劳动.
(1)求男生甲或女生乙被选中的概率;
(2)设“男生甲被选中”为事件A,“女生乙被选中”为事件B,求和.
41.某足球队为评估球员的场上作用,对球员进行数据分析.球员甲在场上出任边锋、前卫、中场三个位置,根据过往多场比赛,其出场率与出场时球队的胜率如下表所示.
(1)当甲出场比赛时,求球队获胜的概率;
(2)当甲出场比赛时,在球队获胜的条件下,求球员甲担当前卫的概率.
42.盒中装有6个同种产品,其中4个一等品,2个二等品,不放回地从中取产品,每次取1个,求:
(1)取两次,两次都取得一等品的概率;
(2)取两次,第二次取得一等品的概率;
(3)取两次,已知第二次取得一等品的条件下,第一次取得的是二等品的概率.
43.银行储蓄卡的密码由6位数字组成.某人在银行自助取款机上取钱时,忘记了密码的最后1位数字,求:
(1)任意按最后1位数字,不超过3次就按对的概率;
(2)如果记得密码的最后1位是偶数,不超过3次就按对的概率.
44.某大学有A,B两个餐厅为学生提供午餐与晚餐服务,甲、乙两位学生每天午餐和晚餐都在学校就餐,近100天选择餐厅就餐情况统计如下:
(1)假设甲、乙选择餐厅相互独立,用频率估计概率.计算某天甲同学午餐去A餐厅用餐的情况下晚餐去B餐厅用餐的概率;
(2)某天午餐,甲和乙两名同学准备去A,B这两个餐厅中某一个就餐.设事件M=“甲选择A餐厅就餐”,事件N=“乙选择A餐厅就餐”,,.若,证明:事件M和N相互独立.
45.有某一项游戏活动的规则如下:先随机投掷一枚骰子,然后根据骰子出现的点数再在袋中取球,最后由取出的球的结果决定奖项.现甲袋中有3个红球,1个白球;乙袋中有2个红球,2个黑球(两个袋中球的大小和质地都是相同的).每人只参加一次活动,且活动后把球放回原袋中.
(1)小王同学参加的具体活动是:若骰子出现2点或4点,则在甲袋中任取一球,若骰子出现1、3、5或6点,则在乙袋中任取一球.如果取到的球是红球,就获奖.
①求小王同学参加活动获奖的概率;
②小王同学参加活动已经获奖,求他是在甲袋中取球的概率;
(2)小李同学参加的具体活动是:若骰子出现1点或2点,则在甲袋中任取一球,如果取出的球是红球,就获得三等奖;若骰子出现3点或4点,则在甲袋中任取2球,如果取出的球都是红球,就获得二等奖;若骰子出现5点或6点,则在甲袋中任取3球,如果取出的球都是红球,就获得一等奖.求小李同学参加活动获奖的概率.
46.新冠病毒在传播过程中会发生变异,现在已有多种变异毒株,传播能力和重症率都各不相同.某地卫生部门统计了本地新冠确诊病例中感染每种毒株的患者在总病例中的比例和各自的重症率,数据统计如下表所示.
已知当地将阿尔法、贝尔塔、德尔塔三种类型病例全部集中收治在甲医院,奥密克戎病例全部单独收治在乙医院.以频率估计概率回答下列问题.
(1)某医生从甲医院新冠确诊病例名单中任取1人,求其为重症病例的概率;
(2)某医生从乙医院新冠确诊病例名单中任取2人,已知2人中有重症病例,求2人都是重症病例的概率(结果保留4位小数).
47.(1)对于任意两个事件,若,,证明:;
(2)贝叶斯公式是由英国数学家贝叶斯发现的,它用来描述两个条件概率之间的关系.该公式为:设,,…,是一组两两互斥的事件,,且,,2,…,,则对任意的事件,,有,,2,…,.
(i)已知某地区烟民的肺癌发病率为1%,先用低剂量进行肺癌筛查,医学研究表明,化验结果是存在错误的.已知患有肺癌的人其化验结果99%呈阳性(有病),而没有患肺癌的人其化验结果99%呈阴性(无病),现某烟民的检验结果为阳性,请问他真的患肺癌的概率是多少?
(ii)为了确保诊断无误,一般对第一次检查呈阳性的烟民进行复诊.复诊时,此人患肺癌的概率就不再是1%,这是因为第一次检查呈阳性,所以对其患肺癌的概率进行修正,因此将用贝叶斯公式求出来的概率作为修正概率,请问如果该烟民第二次检查还是呈阳性,则他真的患肺癌的概率是多少?
【B组 在综合中考查能力】
一、单选题
1.已知随机事件A,B满足,则( )
A.B.C.D.
2.从A班随机抽一名学生是女生的概率是,从B班随机抽一名学生是女生的概率是,现从两个班各随机抽一名学生,那么两名学生不全是女生的概率是( )
A.B.C.D.
3.有甲、乙两个袋子,甲袋中有2个白球和1个红球,乙袋中有2个红球和中1个白球,这6个球手感上不可区别.现从甲袋中任取一球放入乙袋,搅匀后再从乙袋中任取一球,则收到红球的概率是( )
A.B.C.D.
4.抛掷一枚质地均匀骰子2次,设事件A=“第一次骰子正面向上的数字为2”,设事件B=“两次骰子正面向上的数字之和为7”,设事件C=“两次骰子正面向上的数字之和为5”,则( )
A.事件A和事件C互斥B.事件B和事件C互为对立
C.事件A和事件B相互独立D.事件A和事件C相互独立
5.在4次独立试验中,事件A出现的概率相同,若事件A至少发生一次的概率是,则事件A在一次试验中出现的概率为( )
A.B.C.D.
6.某同学喜爱球类和游泳运动,在暑假期间,该同学上午去打球的概率为,若该同学上午不去打球,则下午一定去游泳;若上午去打球,则下午去游泳的概率为.已知该同学在某天下午去游了泳,则上午打球的概率为( )
A.B.C.D.
7.某高校校党委计划开展“学党史,争当新时代先锋”活动月,并在活动月末举办党史知识竞赛.数学学院初步推选出2名教师和6名学生共8名党史知识学习优秀者,并从中随机选取5名组成院代表队参加学校党史知识竞赛,则在代表队中既有教师又有学生的条件下,教师甲被选中的概率为( )
A.B.C.D.
8.已知甲袋中装有个红球,个白球,乙袋中装有3个红球,4个白球,先从甲袋中任取1球放入乙袋中,再从乙袋中任取出1球,若取出的是红球的概率为,则从甲袋中任取一个球,取出的是红球的概率为( )
A.B.C.D.
9.一名具有30多年医药研究和教学经验的医生面对这样一个问题:妇女患上乳腺癌的概率为0.8%. 如果一名妇女患上了乳腺癌,其X光片有90%的可能呈阳性;如果没有,则X光片呈阳性的概率为7%. 现知道一名妇女的X光片呈阳性,请帮助该医生计算这位妇女真正患上乳腺癌的概率约为( )
A.9%B.33%C.70%D.90%
10.某货车为某书店运送书籍,共箱,其中箱语文书、箱数学书、箱英语书.到达目的地时发现丢失一箱,但不知丢失哪一箱.现从剩下的箱书中随机打开箱,结果是箱语文书、箱数学书,则丢失的一箱是英语书的概率为( )
A.B.C.D.
11.某居民小区有两个相互独立的安全防范系统和,系统和系统在任意时刻发生故障的概率分别为和,已知两个系统至少有一个能正常运作,小区就处于安全防范状态.若要求小区在任意时刻均处于安全防范状态的概率不低于,则的最大值为( )
A.B.C.D.
12.五一国际劳动节,学校团委举办“我劳动,我快乐”的演讲比赛.某班有甲、乙、丙等5名同学参加,抽签确定出场顺序.在“学生甲必须在学生乙的前面出场”的前提下,学生甲、乙相邻出场的概率为( ).
A.B.C.D.
13.随机化回答技术是为调查敏感性问题特别设计的问卷调查技术,其基本特征是被调查者对所调查的问题采取随机回答的方式,避免在没有任何保护的情况下直接回答敏感性问题,从而既对被调查者的隐私和秘密加以保护,又能获得所需要的真实信息.某公司为提升员工的工作效率,规范管理,决定出台新的员工考勤管理方案,方案起草后,为了解员工对新方案是否满意,决定采取如下随机化回答技术进行问卷调查:所有员工每人抛掷一枚质地均匀的硬币两次,约定“若结果为一次正面朝上一次反面朝上,则按①回答问卷,否则按②回答问卷”.
①:若第一次抛掷硬币出现正面朝上,则在问卷中画“√”,否则画“×”;
②:若你对新考勤管理方案满意,则在问卷中画“√”,否则画“×”.
当所有员工完成问卷调查后,统计画√,画×的比例为3∶2,用频率估计概率,则该公司员工对考勤管理方案的满意率为( )
A.50%B.60%C.70%D.80%
14.质地均匀的正四面体表面上分别标有数字1,2,3,4,抛掷该正四面体两次,记事件为“第一次向下的数字为偶数”,事件为“两次向下的数字之和为奇数”,则下列说法错误的是( )
A.B.事件和事件互为对立事件
C.D.事件和事件相互独立
15.已知颜色分别是红、绿、黄的三个大小相同的口袋,红色口袋内装有两个红球,一个绿球和一个黄球;绿色口袋内装有两个红球,一个黄球;黄色口袋内装有三个红球,两个绿球(球的大小质地相同).若第一次先从红色口袋内随机抽取1个球,然后将取出的球放入与球同颜色的口袋内,第二次从该口袋内任取一个球,则第二次取到黄球的概率为( )
A.B.C.D.
二、多选题
16.骰子通常作为桌上游戏的小道具.最常见的骰子是六面骰,它是一个质地均匀的正方体,六个面上分别写有数字,现有一款闯关游戏,共有3关,规则如下:在第关要抛掷六面骰次,每次观察向上面的点数并做记录,如果这次抛掷所出现的点数之和大于,则算闯过第关,,假定每次闯关互不影响,则( )
A.挑战第1关通过的概率为
B.直接挑战第2关并过关的概率为
C.连续挑战前两关并过关的概率为
D.若直接挑战第3关,设“三个点数之和等于15”,“至少出现一个5点”,则
17.有3台车床加工同一型号的零件,第1,2,3台加工的次品率分别为,,,加工出来的零件混放在一起.已知第1,2,3台车床加工的零件数的比为,现任取一个零件,记事件“零件为第台车床加工”(,2,3),事件 “零件为次品”,则下列结论中正确的是( )
A.B.
C.D.
18.下列对各事件发生的概率判断正确的是( )
A.某学生在上学的路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是,那么该生在上学路上到第3个路口首次遇到红灯的概率为
B.三人独立地破译一份密码,他们能单独译出的概率分别为,,,假设他们破译密码是彼此独立的,则此密码被破译的概率为
C.从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是
D.设两个独立事件A和B都不发生的概率为,A发生B不发生的概率与B发生A不发生的概率相同,则事件A发生的概率是
19.现有甲、乙两个箱子,甲中有2个红球,2个黑球,6个白球,乙中有5个红球和4个白球,现从甲箱中取出一球放入乙箱中,分别以表示由甲箱中取出的是红球,黑球和白球的事件,再从乙箱中随机取出一球,则下列说法正确的是( )
A.两两互斥.
B.根据上述抽法,从乙中取出的球是红球的概率为.
C.以表示由乙箱中取出的是红球的事件,则.
D.在上述抽法中,若取出乙箱中一球的同时再从甲箱取出一球,则取出的两球都是红球的概率为.
20.某儿童乐园有甲,乙两个游乐场,小王同学第一天去甲、乙两家游乐场游玩的概率分别为0.3和0.7,如果他第一天去甲游乐场,那么第二天去甲游乐场的概率为0.7;如果第一天去乙游乐场,那么第二天去甲游乐场的概率为0.6,则王同学( )
A.第二天去甲游乐场的概率为0.63
B.第二天去乙游乐场的概率为0.42
C.第二天去了甲游乐场,则第一天去乙游乐场的概率为
D.第二天去了乙游乐场,则第一天去甲游乐场的概率为
21.我国为了鼓励新能源汽车的发展,推行了许多购车优惠政策,包括:国家财政补贴、地方财政补贴、免征车辆购置税、充电设施奖补、车船税减免、放宽汽车消费信贷等.记事件表示“政府推出购买电动汽车优惠补贴政策”;事件表示“电动汽车销量增加”,,.一般来说,推出购车优惠补贴政策的情况下,电动汽车销量增加的概率会比不推出优惠补贴政策时增加的概率要大.基于以上情况,下列不等式正确的是( )
A.B.
C.D..
22.在一个抽奖游戏中,主持人从编号为1,2,3,4的四个外观相同的空箱子中随机选择一个,放入一件奖品,再将四个箱子关闭,也就是主持人知道奖品在哪个箱子里,当抽奖人选择了某个箱子后,在箱子打开之前,主持人先随机打开了另一个没有奖品的箱子,并问抽奖人是否愿意更改选择以便增加中奖概率,现在已知甲选择了1号箱,在箱子打开之前,主持人先打开了3号箱.用表示i号箱有奖品(i=1,2,3,4),用表示主持人打开j号箱子j=2,3,4),下列结论正确的是( )
A.
B.
C.要使获奖概率更大,甲应该坚持选择1号箱
D.要使获奖概率更大,用应该改选2号或者4号箱
三、填空题
23.我市男子乒乓球队为备战下届市运会,在某训练基地进行封闭时训练,甲、乙两队队员进行对抗赛,每局依次轮流发球,连续赢两个球者获胜.通过分析甲、乙过去对抗赛的数据知,甲发球甲赢的概率为,乙发球甲赢的概率为,不同球的结果互不影响.已知某局甲先发球,该局打四个球,甲赢的概率是
24.甲、乙两队进行自由式轮滑速度障碍赛决赛,采取五场三胜制(当一队赢得三场比赛时,该队获胜,比赛结束),根据以往比赛成绩可知;甲队每场比赛获胜的概率为.比赛结果没有平局,且各场比赛结果相互独立,则甲队获胜的概率为 .
25.某同学参加科普知识竞赛,需回答3个问题,竞赛规则规定:答对第一、二、三个问题分别得100分、100分、200分,答错得零分.假设这名同学答对第一、二、三个问题的概率分别为0.8、0.7、0.6,且各题答对与否相互之间没有影响,则这名同学得300分的概率为 .
26.假设有两箱零件,第一箱内装有10件,其中有3件次品;第二箱内装有20件,其中有2件次品.现从两箱中随意挑选一箱,然后从该箱中随机取1个零件,已知取出的是次品,则它是从第一箱取出的概率为 .
27.甲、乙、丙、丁人分别到、、、四所学校实习,每所学校一人,在甲不去校的条件下,乙不去校的概率是 .
28.在概率论中,全概率公式指的是:设为样本空间,若是一组两两互斥的事件,,则对任意的事件,有.若甲盒中有个红球、个白球、个黑球,乙盒中有个红球、个白球、个黑球,现从甲盒中随机取出一个球放入乙盒,再从乙盒中随机取出一个球, “从乙盒中取出的球是红球”,若,则的最大值为 .
29.一位飞镖运动员向一个目标投掷三次,记事件“第次命中目标”,,,,则 .
30.已知在自然人群中,男性色盲患者出现的概率为7%,女性色盲患者出现的概率为0.5%.今从男女人数相等的人群中随机地挑选一人,恰好是色盲患者,则此人是男性的概率是 .
31.甲箱中有5个红球,2个白球和3个黑球,乙箱中有4个红球,3个白球和3个黑球(球除颜色外,大小质地均相同).先从甲箱中随机取出一球放入乙箱,分别以,和表示由甲箱中取出的球是红球,白球和黑球的事件;再从乙箱中随机取出一球,以B表示由乙箱中取出的球是红球的事件,下列说法正确的序号是 .
①事件,相互独立;②;③;④;⑤.
四、解答题
32.面对某种流感病毒,各国医疗科研机构都在研究疫苗,现有A、B、C三个独立的研究机构在一定的时期研制出疫苗的概率分别为:,求
(1)他们都研制出疫苗的概率;
(2)他们能研制出疫苗的概率;
(3)至多有一个机构研制出疫苗的概率.
33.某单位有A,B两个餐厅为员工提供午餐与晚餐服务,甲、乙两位员工每个工作日午餐和晚餐都在单位就餐,近100个工作日选择餐厅就餐情况统计如下:
假设甲、乙员工选择餐厅相互独立,用频率估计概率.
(1)分别估计一天中甲员工午餐和晚餐都选择A餐厅就餐的概率,乙员工午餐和晚餐都选择B餐厅就餐的概率;
(2)试判断甲、乙员工在晚餐选择B餐厅就餐的条件下,哪位员工更有可能午餐选择A餐厅就餐,并说明理由.
34.第三次人工智能浪潮滚滚而来,以ChatGPT 发布为里程碑,开辟了人机自然交流的新纪元.ChatGPT所用到的数学知识,开辟了人机自然交流的新纪元. ChatGPT所用到的数学知识并非都是遥不可及的高深理论,条件概率就被广泛应用于ChatGPT 中.某数学素养提升小组设计了如下问题进行探究:现有完全相同的甲,乙两个箱子(如图),其中甲箱装有2个黑球和4个白球,乙箱装有2个黑球和3个白球,这些球除颜色外完全相同.某人先从两个箱子中任取一个箱子,再从中随机摸出一球.
(1)求摸出的球是黑球的概率;
(2)若已知摸出的球是黑球,请用概率公式判断该球取自哪个箱子的可能性更大.
35.某次数学考试中只有两道题目,甲同学答对每题的概率均为,乙同学答对每题的概率均为,且每人各题答题结果互不影响.已知每题甲、乙同时答对的概率为,恰有一人答对的概率为.
(1)求和的值;
(2)设事件“甲同学答对了道题”,事件“乙同学答对了道题”,,试求甲乙两人共答对了3道题的概率.
36.已知某著名高校今年综合评价招生分两步进行:第一步是材料初审,若材料初审不合格,则不能进入第二步面试;若材料初审合格,则进入第二步面试.只有面试合格者,才能获得该高校综合评价的录取资格,且材料初审与面试之间相互独立,现有甲、乙、丙三名考生报名参加该高校的综合评价,假设甲、乙,丙三名考生材料初审合格的概率分别是,,,面试合格的概率分别是,,.
(1)求甲、乙两位考生中且只有一位考生获得该高校综合评价录取资格的概率;
(2)求三人中至少有一人获得该高校综合评价录取资格的概率.
37.有3台车床加工同一型号的零件,第1台加工的次品率为6%,第2,3台加工的次品率均为5%,加工出来的零件混放在一起,已知第1,2,3台车床加工的零件数分别占总数的25%,30%,45%.
(1)任取一个零件,计算它是次品的概率;
(2)如果取到的零件是次品,计算它是第1台车床所加工的概率(结果用分数表示);
(3)参照第(2)问给出判断,求第1,2,3台车床操作员对加工次品分别应承担的份额.
38.在一个抽奖游戏中,主持人从编号为的四个外观相同的空箱子中随机选择一个,放入一件奖品,再将四个箱子关闭.主持人知道奖品在哪个箱子里.游戏规则是主持人请抽奖人在这四个箱子中选择一个,若奖品在此箱子里,则奖品由获奖人获得.现有抽奖人甲选择了2号箱,在打开2号箱之前,主持人先打开了另外三个箱子中的一个空箱子.按游戏规则,主持人将随机打开甲的选择之外的一个空箱子.
(1)计算主持人打开4号箱的概率;
(2)当主持人打开4号箱后,现在给抽奖人甲一次重新选择的机会,请问他是坚持选2号箱,还是改选1号或3号箱?(以获得奖品的概率最大为决策依据)
39.某地区举行数学核心素养测评,要求以学校为单位参赛,最终学校和学校进入决赛.决赛规则如下:现有甲、乙两个纸箱,甲箱中有4道选择题和2道填空题,乙箱中有3道选择题和3道填空题,决赛由两个环节组成,环节一:要求两校每位参赛同学在甲或乙两个纸箱中随机抽取两题作答,作答后放回原箱;环节二:由学校和学校分别派出一名代表进行比赛.两个环节按照相关比赛规则分别累计得分,以累计得分的高低决定名次.
(1)环节一结束后,采用样本量比例分配的分层随机抽样,如果不知道样本数据,只知道从学校抽取12人,其答对题目的平均数为1,方差为1,从学校抽取8人,其答对题目的平均数为1.5,方差为0.25,求这20人答对题目的均值与方差;
(2)环节二,学校代表先从甲箱中依次抽取了两道题目,答题结束后将题目一起放入乙箱中,然后学校代表再从乙箱中抽取题目,已知学校代表从乙箱中抽取的第一题是选择题,求学校代表从甲箱中取出的是两道选择题的概率.
【C组 在创新中考查思维】
一、单选题
1.对于一个古典概型的样本空间和事件A,B,C,D,其中,,,,,,,,则( )
A.A与B不互斥B.A与D互斥但不对立
C.C与D互斥D.A与C相互独立
2.甲罐中有5个红球,2个白球和3个黑球, 乙罐中有4个红球,3个白球和3个黑球(球除颜色外,大小质地均相同).先从甲罐中随机取出一球放入乙罐,分别以和表示由甲罐中取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B表示由乙罐中取出的球是红球的事件.下列结论正确的个数是( )
①事件与相互独立;
②,,是两两互斥的事件;
③;
④;
⑤
A.5B.4C.3D.2
3.甲、乙、丙三人相互做传球训练,第1次由甲将球传出,每次传球时,传球者都等可能地将球传给另外两个人中的任何一人,则6次传球后球在甲手中的概率为( )
A.B.C.D.
4.某教师准备对一天的五节课进行课程安排,要求语文、数学、外语、物理、化学每科分别要排一节课,则数学不排第一节,物理不排最后一节的情况下,化学排第四节的概率是( )
A.B.C.D.
二、多选题
5.甲、乙两人进行局羽毛球比赛(无平局),每局甲获胜的概率均为.规定:比赛结束时获胜局数多的人赢得比赛.记甲赢得比赛的概率为,假设每局比赛互不影响,则( )
A.B.C.D.单调递增
6.已知编号为1,2,3的三个盒子,其中1号盒子内装有两个1号球,一个2号球和一个3号球;2号盒子内装有两个1号球,一个3号球;3号盒子内装有三个1号球,两个2号球.若第一次先从1号盒子内随机抽取1个球,将取出的球放入与球同编号的盒子中,第二次从该盒子中任取一个球,则下列说法正确的是( )
A.在第一次抽到2号球的条件下,第二次抽到1号球的概率为
B.第二次抽到3号球的概率为
C.如果第二次抽到的是3号球,则它来自1号盒子的概率最大
D.如果将5个不同的小球放入这三个盒子内,每个盒子至少放1个,则不同的放法有180种
7.一个不透明的袋子中装有大小形状完全相同的红、黄、蓝三种颜色的小球各一个,每次从袋子中随机摸出一个小球,记录颜色后放回,当三种颜色的小球均被摸出过时就停止摸球.设“第i次摸到红球”,“第i次摸到黄球”,“第i次摸到蓝球”,“摸完第i次球后就停止摸球”,则( )
A.B.
C.,D.,
三、填空题
8.如图,甲乙做游戏,两人通过划拳(剪刀、石头、布)比赛决胜谁首先登上第3个台阶,并规定从平地开始,每次划拳赢的一方登上一级台阶,输的一方原地不动,平局时两人都上一个台阶.如果一方连续赢两次,那么他将额外获得上一级台阶的奖励,除非已经登上第3个台阶,当有任何一方登上第3个台阶时游戏结束,则游戏结束时恰好划拳3次的概率为 .
9.现有一款闯关游戏,共有4关,规则如下:在第关要抛掷骰子次,每次观察向上面的点数并做记录,如果这n次抛掷所出现的点数之和大于,则算闯过第关,,2,3,4.假定每次闯关互不影响,则下列结论错误的序号是 .
(1)直接挑战第2关并过关的概率为;
(2)连续挑战前两关并过关的概率为;
(3)若直接挑战第3关,设A=“三个点数之和等于15”,B=“至少出现一个5点”,则;
(4)若直接挑战第4关,则过关的概率是.
10.现有n(,)个相同的袋子,里面均装有n个除颜色外其他无区别的小球,第k(,2,3,…,n)个袋中有k个红球,个白球.现将这些袋子混合后,任选其中一个袋子,并且从中连续取出三个球(每个取后不放回),若第三次取出的球为白球的概率是,则 .
四、解答题
11.双淘汰赛制是一种竞赛形式,比赛一般分两个组进行,即胜者组与负者组.在第一轮比赛后,获胜者编入胜者组,失败者编入负者组继续比赛,之后的每一轮,在负者组中的失败者将被淘汰;胜者组的情况也类似,只是失败者仅被淘汰出胜者组降入负者组,只有在负者组中再次失败后才会被淘汰出整个比赛.A、B、C、D四人参加的双淘汰赛制的流程如图所示,其中第6场比赛为决赛.
(1)假设四人实力旗鼓相当,即各比赛每人的胜率均为50%,求:
①A获得季军的概率;
②D成为亚军的概率;
(2)若A的实力出类拔萃,有4人参加的比赛其胜率均为75%,其余三人实力旗鼓相当,求D进入决赛且先前与对手已有过招的概率.
12.某游戏中的角色“突击者”的攻击有一段冷却时间(即发动一次攻击后需经过一段时间才能再次发动攻击).其拥有两个技能,技能一是每次发动攻击后有的概率使自己的下一次攻击立即冷却完毕并直接发动,该技能可以连续触发,从而可能连续多次跳过冷却时间持续发动攻击;技能二是每次发动攻击时有的概率使得本次攻击以及接下来的攻击的伤害全部变为原来的2倍,但是多次触发时效果不可叠加(相当于多次触发技能二时仅得到第一次触发带来的2倍伤害加成).每次攻击发动时先判定技能二是否触发,再判定技能一是否触发.发动一次攻击并连续多次触发技能一而带来的连续攻击称为一轮攻击,造成的总伤害称为一轮攻击的伤害.假设“突击者”单次攻击的伤害为1,技能一和技能二的各次触发均彼此独立:
(1)当“突击者”发动一轮攻击时,记事件A为“技能一和技能二的触发次数之和为2”,事件B为“技能一和技能二各触发1次”,求条件概率
(2)设n是正整数,“突击者”一轮攻击造成的伤害为的概率记为,求.
时段
价格变化
第1天到第20天
-
+
+
0
-
-
-
+
+
0
+
0
-
-
+
-
+
0
0
+
第21天到第40天
0
+
+
0
-
-
-
+
+
0
+
0
+
-
-
-
+
0
-
+
场上位置
边锋
前卫
中场
出场率
球队胜率
选择餐厅情况午餐,晚餐
甲
30天
20天
40天
10天
乙
20天
25天
15天
40天
病毒类型
在确诊病例中的比例
重症率
阿尔法
10%
2.4%
贝尔特
15%
3.8%
德尔塔
25%
4%
奥密克戎
50%
2%
选择餐厅情况(午餐,晚餐)
甲员工
30天
20天
40天
10天
乙员工
20天
25天
15天
40天
新高考数学一轮复习分层提升练习第53练 事件的独立性、条件概率和全概率公式(2份打包,原卷版+含解析): 这是一份新高考数学一轮复习分层提升练习第53练 事件的独立性、条件概率和全概率公式(2份打包,原卷版+含解析),文件包含新高考数学一轮复习分层提升练习第53练事件的独立性条件概率和全概率公式原卷版doc、新高考数学一轮复习分层提升练习第53练事件的独立性条件概率和全概率公式含解析doc等2份试卷配套教学资源,其中试卷共100页, 欢迎下载使用。
新高考数学一轮复习讲义 第53讲 事件的独立性、条件概率和全概率公式(2份打包,原卷版+含解析): 这是一份新高考数学一轮复习讲义 第53讲 事件的独立性、条件概率和全概率公式(2份打包,原卷版+含解析),文件包含新高考数学一轮复习讲义第53讲事件的独立性条件概率和全概率公式原卷版doc、新高考数学一轮复习讲义第53讲事件的独立性条件概率和全概率公式含解析doc等2份试卷配套教学资源,其中试卷共90页, 欢迎下载使用。
第53讲 事件的独立性、条件概率和全概率公式(精讲)【一轮复习讲义】2025年高考数学高频考点题型归纳与方法总结(新高考通用): 这是一份第53讲 事件的独立性、条件概率和全概率公式(精讲)【一轮复习讲义】2025年高考数学高频考点题型归纳与方法总结(新高考通用),文件包含第53讲事件的独立性条件概率和全概率公式精讲原卷版docx、第53讲事件的独立性条件概率和全概率公式精讲解析版docx等2份试卷配套教学资源,其中试卷共85页, 欢迎下载使用。