§5.5 复 数 课件-2025高考数学一轮复习
展开1.通过方程的解,认识复数.2.理解复数的代数表示及其几何意义,理解两个复数相等的含义.3.掌握复数的四则运算,了解复数加、减运算的几何意义.
第一部分 落实主干知识
第二部分 探究核心题型
1.复数的有关概念(1)复数的定义:形如a+bi(a,b∈R)的数叫作复数,其中 是实部,____是虚部,i为虚数单位.(2)复数的分类:复数z=a+bi(a,b∈R)
实数(b 0),虚数(b 0)(当a 0时为纯虚数).
(3)复数相等:a+bi=c+di⇔ (a,b,c,d∈R).(4)共轭复数:a+bi与c+di互为共轭复数⇔ (a,b,c,d∈R).(5)复数的模:向量 的模叫作复数z=a+bi的模或绝对值,记作 或 ,即|z|=|a+bi|= (a,b∈R).
2.复数的几何意义(1)复数z=a+bi(a,b∈R)复平面内的点Z(a,b).(2)复数z=a+bi(a,b∈R)平面向量 .3.复数的四则运算(1)复数的加、减、乘、除运算法则:设z1=a+bi,z2=c+di(a,b,c,d∈R),则①加法:z1+z2=(a+bi)+(c+di)= ;
(a+c)+(b+d)i
②减法:z1-z2=(a+bi)-(c+di)= ;③乘法:z1z2=(a+bi)(c+di)= ;
(a-c)+(b-d)i
(ac-bd)+(ad+bc)i
(2)几何意义:复数加、减法可按向量的平行四边形法则或三角形法则进行.如图给出的平行四边形OZ1ZZ2可以直观地反映出复数加、减法的几何意义,即 = , = .
2.i4n=1,i4n+1=i,i4n+2=-1,i4n+3=-i(n∈N*)+i4n+1+i4n+2+i4n+3=0(n∈N*).4.复数z的方程在复平面上表示的图形(1)a≤|z|≤b表示以原点O为圆心,以a和b为半径的两圆所夹的圆环;(2)|z-(a+bi)|=r(r>0)表示以(a,b)为圆心,r为半径的圆.
1.判断下列结论是否正确.(请在括号中打“√”或“×”)(1)复数z=0没有共轭复数.( )(2)复数可以比较大小.( )(3)已知z=a+bi(a,b∈R),当a=0时,复数z为纯虚数.( )(4)复数的模实质上就是复平面内复数对应的点到原点的距离,也就是复数对应的向量的模.( )
2.已知复数z=i3(1+i),则z在复平面内对应的点位于A.第一象限 B.第二象限C.第三象限 D.第四象限
z=i3(1+i)=-i(1+i)=1-i,z在复平面内对应的点为(1,-1),位于第四象限.
3.(2023·合肥模拟)已知i是虚数单位,若|1+ai|=5,则实数a等于
4.已知复数z满足z(1-i)=i(i为虚数单位),则z的虚部为________.
例1 (1)(多选)(2023·银川模拟)若复数z满足z(1-2i)=10,则
对于B,z-2=2+4i-2=4i,为纯虚数,故B正确;对于C,z=2+4i,其在复平面内对应的点为(2,4),在第一象限,故C错误;
(2)(2024·杭州模拟)若复数z满足z(1+i)=-2+i(i是虚数单位),则|z|等于
依题意,z(1+i)=-2+i,
x1,x2均为虚数,不能比较大小,故B错误;
解决复数概念问题的方法及注意事项(1)复数的分类及对应点的位置问题都可以转化为复数的实部与虚部应该满足的条件问题,只需把复数化为代数形式,列出实部和虚部满足的方程(不等式)组即可.(2)解题时一定要先看复数是否为a+bi(a,b∈R)的形式,以确定实部和虚部.
跟踪训练1 (1)(多选)下面是关于复数z=-1-i(i为虚数单位)的命题,其中真命题为A.|z|=2B.z2=2iC.z的共轭复数为1+iD.z的虚部为-1
B选项,z2=(-1-i)2=1+2i+i2=2i,B正确;C选项,z的共轭复数为-1+i,C错误;D选项,z的虚部为-1,D正确.
(2)(2023·淄博模拟)若复数z= 的实部与虚部相等,则实数a的值为A.-3 B.-1 C.1 D.3
所以2a+1=a-2,解得a=-3,故实数a的值为-3.
(3)(2023·怀化模拟)若复数z是x2+x+1=0的根,则|z|等于
题型二 复数的四则运算
A.-i B.i C.0 D.1
(2)(多选)(2023·忻州模拟)下列关于非零复数z1,z2的结论正确的是A.若z1,z2互为共轭复数,则z1·z2∈RB.若z1·z2∈R,则z1,z2互为共轭复数
设z1=a+bi(a,b∈R),由z1,z2互为共轭复数,得z2=a-bi,则z1·z2=a2+b2∈R,故A正确;当z1=2+2i,z2=1-i时,z1·z2=4∈R,此时z1,z2不是共轭复数,故B错误;由z1,z2互为共轭复数,得|z1|=|z2|,
(1)复数的乘法:复数乘法类似于多项式的乘法运算.(2)复数的除法:除法的关键是分子分母同乘以分母的共轭复数.
跟踪训练2 (1)(2022·新高考全国Ⅱ)(2+2i)(1-2i)等于A.-2+4i B.-2-4iC.6+2i D.6-2i
(2+2i)(1-2i)=2-4i+2i+4=6-2i.
(2)(2023·济宁模拟)已知复数z满足z·i3=1-2i,则 的虚部为A.1 B.-1 C.2 D.-2
∵z·i3=1-2i,∴-zi=1-2i,
题型三 复数的几何意义
(2)(2023·邢台模拟)已知i是虚数单位,复数z=a+bi(a,b∈R),且|z-i|=|z+2-i|,则|z-3+ i|的最小值为A.5 B.4 C.3 D.2
因为z=a+bi(a,b∈R),则z-i=a+(b-1)i,z+2-i=(a+2)+(b-1)i,
解得a=-1,则z=-1+bi,
由于复数、点、向量之间建立了一一对应的关系,因此可以把复数、向量与解析几何联系在一起,解题时可运用数形结合的方法,使问题的解决更加直观.
跟踪训练3 (1)在复平面内,O为坐标原点,复数z1=i(-4+3i),z2=7+i对应的点分别为Z1,Z2,则∠Z1OZ2的大小为
∵z1=i(-4+3i)=-3-4i,z2=7+i,
(2)(2023·太原模拟)已知复数z满足|z-2|=1,则|z-i|的最小值为
设z=x+yi(x,y∈R),
所以(x-2)2+y2=1,即z在复平面内对应点的轨迹为圆C:(x-2)2+y2=1,如图,
一、单项选择题1.已知a,b∈R,a+3i=(b+i)i(i为虚数单位),则A.a=1,b=-3 B.a=-1,b=3C.a=-1,b=-3 D.a=1,b=3
因为a+3i=(b+i)i=-1+bi,所以a=-1,b=3.
2.(2023·西安模拟)已知i是虚数单位,复数z满足z-i= ,则复数z的共轭复数为A.2 B.-2 C.2i D.-2i
所以z=2,所以复数z的共轭复数为2.
3.如果一个复数的实部和虚部相等,则称这个复数为“等部复数”,若复数z=(2+ai)i(其中a∈R)为“等部复数”,则复数 +ai在复平面内对应的点在A.第一象限 B.第二象限C.第三象限 D.第四象限
∵z=(2+ai)i=-a+2i,又∵“等部复数”的实部和虚部相等,复数z为“等部复数”,∴-a=2,解得a=-2,
复数z1=a+i,z2=1-2i,
解得a=2,即z1=2+i,
5.已知m,n为实数,1-i(i为虚数单位)是关于x的方程x2-mx+n=0的一个根,则m+n等于A.0 B.1 C.2 D.4
由1-i是关于x的方程x2-mx+n=0的一个根,则1+i是关于x的方程x2-mx+n=0的一个根,则m=1-i+1+i=2,n=(1-i)×(1+i)=2,即m=2,n=2,则m+n=4.
6.(2023·齐齐哈尔模拟)已知复数z1与z=3+i在复平面内对应的点关于实轴对称,则 等于A.1+i B.1-i C.-1+i D.-1-i
因为复数z1与z=3+i在复平面内对应的点关于实轴对称,所以z1=3-i,
7.(2024·沧州模拟)设复数z满足|z-1+i|=2,z在复平面内对应的点为(x,y),则A.(x+1)2+(y-1)2=4B.(x+1)2+(y+1)2=4C.(x-1)2+(y-1)2=4D.(x-1)2+(y+1)2=4
复数z满足z=x+yi(x,y∈R),则|x-1+(y+1)i|=2,∴(x-1)2+(y+1)2=4.
8.(2023·贵阳模拟)欧拉公式exi=cs x+isin x由瑞士著名数学家欧拉创立,该公式将指数函数的定义域扩大到复数集,建立了三角函数与指数函数的关联,在复变函数论占有非常重要的地位,被誉为数学中的天桥.依据欧拉公式,下列选项中不正确的是A. 对应的点位于第二象限B. 为纯虚数
二、多项选择题9.(2023·衡阳模拟)已知i为虚数单位,则下列结论中正确的是A.i+i2+i3+i4=0B.3+i>1+iC.若复数z为纯虚数,则|z|2=z2D.复数-2-i的虚部为-1
对于A,由虚数的运算性质,可得i+i2+i3+i4=i-1-i+1=0,故A正确;对于B,虚数不能比较大小,故B不正确;对于C,当z=i时,|z|2=1,z2=-1,此时|z|2≠z2,故C不正确;对于D,根据复数的概念,可得复数-2-i的虚部为-1,故D正确.
对于C,当z1=3+4i,z2=5时,|z1|=|z2|=5,但是z1≠±z2,故C错误;
12.写出一个同时满足①②的复数z=________.
因为z∉R,不妨设z=bi(b∈R,b≠0),则(bi)3=-b3i=-bi,解得b=±1,即z=±i符合.
14.(2023·成都检测)已知|z|=1,则|z-2-2i|(i为虚数单位)的最大值为___________.
设z=x+yi,其中x,y∈R,由|z|=1,可得x2+y2=1,根据复数z的几何意义可得复数z表示以原点O为圆心,1为半径的单位圆,
可得|z-2-2i|表示单位圆上的点到点P(2,2)的距离,
15.已知复数z1,z2和z满足|z1|=|z2|=1,若|z1-z2|=|z1-1|=|z2-z|,则|z|的最大值为
根据题意,得|z|=|(z2-z)-z2|≤|z2-z|+|z2|=|z1-1|+1≤|z1|+1+1=3,当z1=-1,z2=1,z=3时,|z1-z2|=|z1-1|=|z2-z|=2,此时|z|=3,所以|z|max=3.
因为复数z1,z2对应的点分别为Z1,Z2,且|z1|=|z2|=2,则可确定点Z1,Z2在以O为圆心,2为半径的圆上,
2025年高考数学一轮复习-5.5-数列的热点问题【课件】: 这是一份2025年高考数学一轮复习-5.5-数列的热点问题【课件】,共34页。
2025年高考数学一轮复习-5.5-函数y=Asin(ωx+φ)的图象及其简单应用【课件】: 这是一份2025年高考数学一轮复习-5.5-函数y=Asin(ωx+φ)的图象及其简单应用【课件】,共60页。PPT课件主要包含了必备知识·逐点夯实,核心考点·分类突破等内容,欢迎下载使用。
2025届高三数学一轮复习课件5.5数学归纳法(人教版新高考新教材): 这是一份2025届高三数学一轮复习课件5.5数学归纳法(人教版新高考新教材),共25页。PPT课件主要包含了课标要求,备考指导,内容索引,知识筛查,知识巩固,n+1等内容,欢迎下载使用。