重庆市鲁能巴蜀中学2022-2023学年九年级数学第一学期期末联考模拟试题含解析
展开2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)
1.如图,正方形OABC绕着点O逆时针旋转40°得到正方形ODEF,连接AF,则∠OFA的度数是( )
A.20°B.25°C.30°D.35°
2.一个长方形的面积为,且一边长为,则另一边的长为( )
A.B.C.D.
3.已知二次函数y=a(x﹣h)2+k(a>0),其图象过点A(0,2),B(8,3),则h的值可以是( )
A.6B.5C.4D.3
4.小苏和小林在如图所示①的跑道上进行米折返跑.在整个过程中,跑步者距起跑线的距离单位:与跑步时间单位:的对应关系如图所示②.下列叙述正确的是( )
A.两人从起跑线同时出发,同时到达终点;
B.小苏跑全程的平均速度大于小林跑全程的平均速度;
C.小苏前15s跑过的路程大于小林前15s跑过的路程;
D.小林在跑最后100m的过程中,与小苏相遇2次;
5.如图,AB是⊙O的直径,PD切⊙O于点C,交AB的延长线于D,且AO=CD,则∠PCA=( )
A.30°B.60°C.67.5°D.45°
6.掷一枚质地均匀硬币,前3次都是正面朝上,掷第4次时正面朝上的概率是( )
A.0B.C.D.1
7.已知二次函数和一次函数的图象如图所示,下面四个推断:
①二次函数有最大值
②二次函数的图象关于直线对称
③当时,二次函数的值大于0
④过动点且垂直于x轴的直线与的图象的交点分别为C,D,当点C位于点D上方时,m的取值范围是或,其中正确的有( )
A.1个B.2个C.3个D.4个
8.反比例函数的图象经过点,,当时,的取值范围是( )
A.B.C.D.
9.矩形的周长为12cm,设其一边长为xcm,面积为ycm2,则y与x的函数关系式及其自变量x的取值范围均正确的是( )
A.y=﹣x2+6x(3<x<6)B.y=﹣x2+12x(0<x<12)
C.y=﹣x2+12x(6<x<12)D.y=﹣x2+6x(0<x<6)
10.关于x的一元二次方程有实数根,则整数a的最大值是( )
A.2B.1C.0D.-1
11.已知x1,x2是一元二次方程x2-2x-1=0的两根,则x1+x2-x1·x2的值是( )
A.1B.3C.-1D.-3
12.已知圆锥的底面半径为3cm,母线长为5cm,则圆锥的侧面积是( )
A.B.C.D.
二、填空题(每题4分,共24分)
13.如图,边长为4的正六边形内接于,则的内接正三角形的边长为______________.
14.如图,在平面直角坐标系中,反比例函数(x>0)与正比例函数y=kx、 (k>1)的图象分别交于点A、B,若∠AOB=45°,则△AOB的面积是________.
15.已知反比例函数的图象经过点,若点在此反比例函数的图象上,则________.
16.2sin30°+tan60°×tan30°=_____.
17.已知点、在二次函数的图像上,则___.(填“”、“”、“”)
18.已知二次函数的图象与x轴有交点,则k的取值范围是__________
三、解答题(共78分)
19.(8分)如图,已知一次函数与反比例函数的图象相交于点,与轴相交于点.
(1)填空:的值为 ,的值为 ;
(2)以为边作菱形,使点在轴正半轴上,点在第一象限,求点的坐标;
20.(8分)速滑运动受到许多年轻人的喜爱。如图,四边形是某速滑场馆建造的滑台,已知,滑台的高为米,且坡面的坡度为.后来为了提高安全性,决定降低坡度,改造后的新坡面AC的坡度为.
(1)求新坡面的坡角及的长;
(2)原坡面底部的正前方米处是护墙,为保证安全,体育管理部门规定,坡面底部至少距护墙米。请问新的设计方案能否通过,试说明理由(参考数据:)
21.(8分)如图,在正方形中,点在边上,过点作于,且.
(1)若,求正方形的周长;
(2)若,求正方形的面积.
22.(10分)已知锐角△ABC内接于⊙O,OD⊥BC于点D.
(1)若∠BAC=60°,⊙O的半径为4,求BC的长;
(2)请用无刻度直尺画出△ABC的角平分线AM. (不写作法,保留作图痕迹)
23.(10分)如图,是半径为的上的定点,动点从出发,以的速度沿圆周逆时针运动,当点回到地立即停止运动.
(1)如果,求点运动的时间;
(2)如果点是延长线上的一点,,那么当点运动的时间为时,判断直线与的位置关系,并说明理由.
24.(10分)已知关于的方程,其中是常数.请用配方法解这个一元二次方程.
25.(12分)△ABC中,AB=AC,D为BC的中点,以D为顶点作∠MDN=∠B,
(1)如图(1)当射线DN经过点A时,DM交AC边于点E,不添加辅助线,写出图中所有与△ADE相似的三角形.
(2)如图(2),将∠MDN绕点D沿逆时针方向旋转,DM,DN分别交线段AC,AB于E,F点(点E与点A不重合),不添加辅助线,写出图中所有的相似三角形,并证明你的结论.
(3)在图(2)中,若AB=AC=10,BC=12,当△DEF的面积等于△ABC的面积的时,求线段EF的长.
26.用适当的方法解一元二次方程:
(1)x2+4x﹣12=0
(2)2x2﹣4x+1=0
参考答案
一、选择题(每题4分,共48分)
1、B
【解析】由旋转的性质和正方形的性质可得∠FOC=40°,AO=OD=OC=OF,∠AOC=90°,再根据等腰三角形的性质可求∠OFA的度数.
【详解】∵正方形OABC绕着点O逆时针旋转40°得到正方形ODEF,
∴∠FOC=40°,AO=OD=OC=OF,∠AOC=90°
∴∠AOF=130°,且AO=OF,
∴∠OFA=25°
故选B.
【点睛】
本题考查了旋转的性质,正方形的性质,等腰三角形的性质,熟练运用旋转的性质解决问题是本题的关键.
2、A
【分析】根据长方形的面积公式结合多项式除以多项式运算法则解题即可.
【详解】长方形的面积为,且一边长为,
另一边的长为
故选:A.
【点睛】
本题考查多项式除以单项式、长方形的面积等知识,是常见考点,难度较易,掌握相关知识是解题关键.
3、D
【解析】解:根据题意可得当0<x<8时,其中有一个x的值满足y=2,
则对称轴所在的位置为0<h<4
故选:D
【点睛】
本题考查二次函数的性质,利用数形结合思想解题是关键.
4、D
【分析】依据函数图象中跑步者距起跑线的距离y(单位:m)与跑步时间t(单位:s)的对应关系,即可得到正确结论.
【详解】解:由函数图象可知:两人从起跑线同时出发,先后到达终点,小林先到达终点,故A错误;
根据图象两人从起跑线同时出发,小林先到达终点,小苏后到达终点,小苏用的时间多,而路程相同,所以小苏跑全程的平均速度小于小林跑全程的平均速度,故B错误;
小苏前15s跑过的路程小于小林前15s跑过的路程,故C错误;
小林在跑最后100m的过程中,两人相遇时,即实线与虚线相交的地方,由图象可知2次,故D正确;
故选:D.
【点睛】
本题主要考查了函数图象的读图能力,要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.
5、C
【分析】直接利用切线的性质结合等腰三角形的性质得出∠PCA的度数.
【详解】解:∵PD切⊙O于点C,
∴∠OCD=90°,
∵AO=CD,
∴OC=DC,
∴∠COD=∠D=45°,
∵AO=CO,
∴∠A=∠ACO=22.5°,
∴∠PCA=90°﹣22.5°=67.5°.
故选:C.
【点睛】
此题主要考查了切线的性质以及等腰三角形的性质,正确得出∠COD=∠D=45°是解题关键.
6、B
【分析】利用概率的意义直接得出答案.
【详解】连续抛掷一枚质地均匀的硬币4次,前3次的结果都是正面朝上,
他第4次抛掷这枚硬币,正面朝上的概率为:.
故选:B.
【点睛】
本题主要考查了概率的意义,正确把握概率的定义是解题关键.
7、B
【分析】根据函数的图象即可得到结论.
【详解】解:∵二次函数y1=ax2+bx+c(a≠0)的图象的开口向上,
∴二次函数y1有最小值,故①错误;
观察函数图象可知二次函数y1的图象关于直线x=-1对称,故②正确;
当x=-2时,二次函数y1的值小于0,故③错误;
当x<-3或x>-1时,抛物线在直线的上方,
∴m的取值范围为:m<-3或m>-1,故④正确.
故选B.
【点睛】
本题考查了二次函数图象上点的坐标特征以及函数图象,熟练运用二次函数图象上点的坐标特征求出二次函数解析式是解题的关键.
8、B
【解析】由图像经过A(2,3)可求出k的值,根据反比例函数的性质可得时,的取值范围.
【详解】∵比例函数的图象经过点,
∴-3=,
解得:k=-6,
反比例函数的解析式为:y=-,
∵k=-6<0,
∴当时,y随x的增大而增大,
∵x=1时,y=-6,x=3时,y=-2,
∴y的取值范围是:-6
【点睛】
本题考查反比例函数的性质,k>0时,图像在一、三象限,在各象限y随x的增大而减小;k<0时,图像在二、四象限,在各象限y随x的增大而增大;熟练掌握反比例函数的性质是解题关键.
9、D
【分析】已知一边长为xcm,则另一边长为(6-x)cm,根据矩形的面积公式即可解答.
【详解】解:已知一边长为xcm,则另一边长为(6-x)cm.
则y=x(6-x)化简可得y=-x2+6x,(0<x<6),
故选:D.
【点睛】
此题主要考查了根据实际问题列二次函数关系式的知识,解题的关键是用x表示出矩形的另一边,此题难度一般.
10、C
【分析】根据一元二次方程的根的判别式可得答案.
【详解】解:∵关于x的一元二次方程有实数根,
∴.
即a的取值范围是且.
∴整数a的最大值为0.
故选C.
【点睛】
本题考查了一元二次方程,熟练掌握根的判别式与根的关系是解题关键.
11、B
【分析】直接根据根与系数的关系求解.
【详解】由题意知:,,
∴原式=2-(-1)=3
故选B.
【点睛】
本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则,.
12、B
【分析】圆锥的侧面积=底面周长×母线长÷2,把相应数值代入即可求解.
【详解】圆锥的侧面积=2π×3×5÷2=15π.
故选:B.
【点睛】
本题考查了圆锥的计算,解题的关键是弄清圆锥的侧面积的计算方法,特别是圆锥的底面周长等于圆锥的侧面扇形的弧长.
二、填空题(每题4分,共24分)
13、
【分析】解:如图,连接OA、OB,易得△AOB是等边三角形,从而可得OA=AB=4,再过点O作OM⊥AE于点M,则∠OAM=30°,AM=ME,然后解直角△AOM求得AM的长,进而可得答案.
【详解】解:如图,连接OA、OB,则∠AOB=60°,OA=OB,∴△AOB是等边三角形,∴OA=AB=4,
过点O作OM⊥AE于点M,则∠OAM=30°,AM=ME,
在直角△AOM中,,
∴AE=2AM=.
故答案为:.
【点睛】
本题考查了正多边形和圆,作辅助线构造直角三角形、利用解直角三角形的知识求解是解题关键.
14、2
【解析】作BD⊥x轴,AC⊥y轴,OH⊥AB(如图),设A(x1,y1),B(x2 , y2),根据反比例函数k的几何意义得x1y1=x2y2=2;将反比例函数分别与y=kx,y=联立,解得x1=,x2=,从而得x1x2=2,所以y1=x2, y2=x1, 根据SAS得△ACO≌△BDO,由全等三角形性质得AO=BO,∠AOC=∠BOD,由垂直定义和已知条件得∠AOC=∠BOD=∠AOH=∠BOH=22.5°,根据AAS得△ACO≌△BDO≌△AHO≌△BHO,根据三角形面积公式得S△ABO=S△AHO+S△BHO=S△ACO+S△BDO=x1y1+ x2y2= ×2+ ×2=2.
【详解】如图:作BD⊥x轴,AC⊥y轴,OH⊥AB,
设A(x1,y1),B(x2 , y2),
∵A、B在反比例函数上,
∴x1y1=x2y2=2,
∵,
解得:x1=,
又∵,
解得:x2=,
∴x1x2=×=2,
∴y1=x2, y2=x1,
即OC=OD,AC=BD,
∵BD⊥x轴,AC⊥y轴,
∴∠ACO=∠BDO=90°,
∴△ACO≌△BDO(SAS),
∴AO=BO,∠AOC=∠BOD,
又∵∠AOB=45°,OH⊥AB,
∴∠AOC=∠BOD=∠AOH=∠BOH=22.5°,
∴△ACO≌△BDO≌△AHO≌△BHO,
∴S△ABO=S△AHO+S△BHO=S△ACO+S△BDO=x1y1+ x2y2= ×2+ ×2=2,
故答案为:2.
【点睛】本题考查了反比例函数系数k的几何意义,反比例函数与一次函数的交点问题,全等三角形的判定与性质等,正确添加辅助线是解题的关键.
15、
【分析】将点(1,3)代入y即可求出k+1的值,再根据k+1=xy解答即可.
【详解】∵反比例函数的图象上有一点(1,3),
∴k+1=1×3=6,
又点(-3,n)在反比例函数的图象上,
∴6=-3×n,
解得:n=-1.
故答案为:-1.
【点睛】
本题考查了反比例函数图象上点的坐标特征,只要点在函数的图象上,则一定满足函数的解析式.反之,只要满足函数解析式就一定在函数的图象上.
16、2
【分析】特殊值:sin 30° = ,tan 60° = ,tan 30° = ,本题是特殊角,将特殊角的三角函数值代入求解.
【详解】解:2sin30°+tan60°×tan30°
=2×+×
=1+1
=2
【点睛】
本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.
17、
【分析】把两点的坐标分别代入二次函数解析式求出纵坐标,再比较大小即可得解.
【详解】时,,
时,,
∵>0,
∴;
故答案为:.
【点睛】
本题考查了二次函数的性质及二次函数图象上点的坐标特征,用求差法比较大小是常用的方法.
18、k≤4且k≠1
【分析】根据二次函数的定义和图象与x轴有交点则△≥0,可得关于k的不等式组,然后求出不等式组的解集即可.
【详解】解:根据题意得k−1≠0且△=22−4×(k−1)×1≥0,
解得k≤4且k≠1.
故答案为:k≤4且k≠1.
【点睛】
本题考查了抛物线与x轴的交点问题:对于二次函数y=ax2+bx+c(a,b,c是常数,a≠0),△=b2−4ac决定抛物线与x轴的交点个数:△>0时,抛物线与x轴有2个交点;△=0时,抛物线与x轴有1个交点;△<0时,抛物线与x轴没有交点.
三、解答题(共78分)
19、(1)3,12;(2)D的坐标为
【分析】(1)把点A(4,n)代入一次函数y=x-3,得到n的值为3;再把点A(4,3)代入反比例函数,得到k的值为12;
(2)根据坐标轴上点的坐标特征可得点B的坐标为(2,0),过点A作AE⊥x轴,垂足为E,过点D作DF⊥x轴,垂足为F,根据勾股定理得到AB=,根据AAS可得△ABE≌△DCF,根据菱形的性质和全等三角形的性质可得点D的坐标.
【详解】(1)把点A(4,n)代入一次函数,可得;
把点A(4,3)代入反比例函数,可得,
解得k=12.
(2)∵一次函数与轴相交于点B,
由,解得,
∴点B的坐标为(2,0)
如图,过点A作轴,垂足为E,
过点D作轴,垂足为F,
∵A(4,3),B(2,0)
∴OE=4,AE=3,OB=2,
∴ BE=OE-OB=4-2=2
在中,.
∵四边形ABCD是菱形,
∴,
∴.
∵轴,轴,
∴.
在与中, ,,AB=CD,
∴,
∴CF=BE=2,DF=AE=3,
∴.
∴点D的坐标为
【点睛】
本题考查了反比例函数与几何图形的综合,熟练掌握菱形的性质是解题的关键.
20、(1)新坡面的坡角为,米;(2)新的设计方案不能通过,理由详见解析.
【分析】(1)过点C作CH⊥BG,根据坡度的概念、正确的定义求出新坡面AC的坡角;(2)根据坡度的定义分别求出AH、BH,求出EA,根据题意进行比较,得到答案.
【详解】解:如图,过点作垂足为
(1)新坡面的坡度为 ,
即新坡面的坡角为
米;
(2)新的设计方案不能通过.
理由如下:
坡面的坡度为,
,
新的设计方案不能通过.
【点睛】
本题考查的是解直角三角形的应用-坡度坡角问题,掌握坡度坡角的概念、熟记锐角三角函数的定义是解题的关键.
21、(1);(2).
【分析】(1)利用AA定理证明,从而得到,设,分别用含x的式子表示出AB,BE,ED,代入比例式,求出x的值,从而求正方形周长;(2)在上取一点,使,连接,利用等腰直角三角形的性质求得,,,然后利用勾股定理求得,从而求解正方形面积.
【详解】解:(1)∵四边形是正方形,
∴.
∵,
∴.
∴.
∵,
∴.
∴.
设.
∵,
∴.
∴.
∴,
∴,即.
∴正方形的周长为.
(2)如图,在上取一点,使,连接.
∵,,
∴.
又因为∠ABD=∠ADB=45°
∴.
∴.
在中,,
∴.
∴.
在中,.
∴正方形的面积.
【点睛】
本题考查相似三角形的判定和性质,正方形的性质,等腰直角三角形的判定和性质以及勾股定理的应用,添加辅助线构造等腰直角三角形是本题的解题关键.
22、(1);(2)见解析
【分析】(1)连接OB、OC,得到,然后根据垂径定理即可求解BC的长;
(2)延长OD交圆于E点,连接AE,根据垂径定理得到,即,AE即为所求.
【详解】(1)连接OB、OC,
∴
∵OD⊥BC
∴BD=CD,且
∵OB=4
∴0D=2,BD=
∴BC=
故答案为;
(2)如图所示,延长OD交⊙O于点E,
连接AE交BC于点M,AM即为所求
根据垂径定理得到,即,所以AE为的角平分线.
【点睛】
本题考查了垂径定理,同弧所对圆周角是圆心角的一半,熟练掌握圆部分的定理和相关性质是解决本题的关键.
23、(1)或(2)直线与相切,理由见解析
【分析】(1)当∠POA=90°时,点P运动的路程为⊙O周长的或,所以分两种情况进行分析;
(2)直线BP与⊙O的位置关系是相切,根据已知可证得OP⊥BP,即直线BP与⊙O相切.
【详解】解:(1)当∠POA=90°时,根据弧长公式可知点P运动的路程为⊙O周长的或,设点P运动的时间为ts;
当点P运动的路程为⊙O周长的时,2π•t=•2π•12,
解得t=3;
当点P运动的路程为⊙O周长的时,2π•t=•2π•12,
解得t=9;
∴当∠POA=90°时,点P运动的时间为3s或9s.
(2)如图,当点P运动的时间为2s时,直线BP与⊙O相切
理由如下:
当点P运动的时间为2s时,点P运动的路程为4πcm,
连接OP,PA;
∵半径AO=12cm,
∴⊙O的周长为24πcm,
∴的长为⊙O周长的,
∴∠POA=60°;
∵OP=OA,
∴△OAP是等边三角形,
∴OP=OA=AP,∠OAP=60°;
∵AB=OA,
∴AP=AB,
∵∠OAP=∠APB+∠B,
∴∠APB=∠B=30°,
∴∠OPB=∠OPA+∠APB=90°,
∴OP⊥BP,
∴直线BP与⊙O相切.
【点睛】
本题考查的是切线的判定,要证某线是圆的切线,已知此线过圆上某点,连接圆心和这点(即为半径),再证垂直即可.
24、详见解析.
【分析】根据配方法可得,,再将p分为三种情况即可求出答案.
【详解】,.
当时,方程有两个不相等的实数根,;
当时,方程有两个相等的实数根;
当时,方程无实数根.
【点睛】
本题考查了解一元二次方程—配方法,熟练掌握这种方法是本题解题的关键.
25、(1)△ABD,△ACD,△DCE(2)△BDF∽△CED∽△DEF,证明见解析;(3)4.
【分析】(1)根据等腰三角形的性质以及相似三角形的判定得出△ADE∽△ABD∽△ACD∽△DCE,同理可得:△ADE∽△ACD.△ADE∽△DCE.
(2)利用已知首先求出∠BFD=∠CDE,即可得出△BDF∽△CED,再利用相似三角形的性质得出,从而得出△BDF∽△CED∽△DEF.
(3)利用△DEF的面积等于△ABC的面积的,求出DH的长,从而利用S△DEF的值求出EF即可
【详解】解:(1)图(1)中与△ADE相似的有△ABD,△ACD,△DCE.
(2)△BDF∽△CED∽△DEF,证明如下:
∵∠B+∠BDF+∠BFD=30°,∠EDF+∠BDF+∠CDE=30°,
又∵∠EDF=∠B,
∴∠BFD=∠CDE.
∵AB=AC,
∴∠B=∠C.
∴△BDF∽△CED.
∴.
∵BD=CD,
∴,即.
又∵∠C=∠EDF,
∴△CED∽△DEF.
∴△BDF∽△CED∽△DEF.
(3)连接AD,过D点作DG⊥EF,DH⊥BF,垂足分别为G,H.
∵AB=AC,D是BC的中点,
∴AD⊥BC,BD=BC=1.
在Rt△ABD中,AD2=AB2﹣BD2,即AD2=102﹣3,
∴AD=2.
∴S△ABC=•BC•AD=×3×2=42,
S△DEF=S△ABC=×42=3.
又∵•AD•BD=•AB•DH,
∴.
∵△BDF∽△DEF,
∴∠DFB=∠EFD.
∵DH⊥BF,DG⊥EF,
∴∠DHF=∠DGF.
又∵DF=DF,
∴△DHF≌△DGF(AAS).
∴DH=DG=.
∵S△DEF=·EF·DG=·EF·=3,
∴EF=4.
【点睛】
本题考查了和相似有关的综合性题目,用到的知识点有三角形相似的判定和性质、等腰三角形的性质以及勾股定理的运用,灵活运用相似三角形的判定定理和性质定理是解题的关键,解答时,要仔细观察图形、选择合适的判定方法,注意数形结合思想的运用.
26、(1),;(2),
【分析】(1)利用因式分解法求解可得;
(2)利用公式法求解可得.
【详解】解:(1)∵x2+4x﹣12=0,
∴(x+6)(x﹣2)=0,
则x+6=0或x﹣2=0,
解得,;
(2)∵a=2,b=﹣4,c=1,
∴△=(﹣4)2﹣4×2×1=8>0,
则x=
∴,
【点睛】
本题主要考查了一元二次方程的解法,解题的关键是熟悉一元二次方程的解法.
重庆市鲁能巴蜀中学校2023-2024学年八年级下学期期末数学试题: 这是一份重庆市鲁能巴蜀中学校2023-2024学年八年级下学期期末数学试题,共13页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
重庆市鲁能巴蜀中学20230-2024学年九年级下学期第一次月考数学试卷: 这是一份重庆市鲁能巴蜀中学20230-2024学年九年级下学期第一次月考数学试卷,共8页。
重庆市鲁能巴蜀中学校2022-2023学年七年级上学期10月月考数学试卷(含解析): 这是一份重庆市鲁能巴蜀中学校2022-2023学年七年级上学期10月月考数学试卷(含解析),共15页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。