终身会员
搜索
    上传资料 赚现金
    河北省名校联盟2023-2024学年高二下学期7月期末考试数学试题(原卷版+解析版)
    立即下载
    加入资料篮
    河北省名校联盟2023-2024学年高二下学期7月期末考试数学试题(原卷版+解析版)01
    河北省名校联盟2023-2024学年高二下学期7月期末考试数学试题(原卷版+解析版)02
    河北省名校联盟2023-2024学年高二下学期7月期末考试数学试题(原卷版+解析版)03
    还剩15页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    河北省名校联盟2023-2024学年高二下学期7月期末考试数学试题(原卷版+解析版)

    展开
    这是一份河北省名校联盟2023-2024学年高二下学期7月期末考试数学试题(原卷版+解析版),共18页。试卷主要包含了本试卷主要考试内容, 已知,则下列判断正确的是, 已知为正实数,则“”是“”的, 定义在上的函数满足,则等内容,欢迎下载使用。

    注意事项:
    1.答题前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上.
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.
    3.考试结束后,将本试卷和答题卡一并交回.
    4.本试卷主要考试内容:集合与常用逻辑用语、不等式、函数与导数.
    一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
    1. 若集合,,则( )
    A. B. C. D.
    2. 已知命题,命题,则( )
    A. 和都真命题B. 和都是真命题
    C. 和都是真命题D. 和都是真命题
    3. 已知函数的导函数为,且,则( )
    A. 2B. C. 1D.
    4. 已知函数在上单调递增,则取值范围是( )
    A. B. C. D.
    5. 已知,则下列判断正确的是( )
    A. B.
    C. D.
    6. 已知为正实数,则“”是“”的( )
    A 充要条件B. 充分不必要条件
    C. 必要不充分条件D. 既不充分也不必要条件
    7. 苏格兰数学家纳皮尔在研究天文学的过程中,为了简化大数之间的计算而发明了对数,利用对数运算可以求出大数的位数.已知,则是( )
    A. 11位数B. 10位数C. 9位数D. 8位数
    8. 若直线是曲线与公切线,则直线的方程为( )
    A. B.
    C. D.
    二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.
    9. 如图所示,连接棱长为2的正方体各面的中心得到一个多面体容器,从顶点处向该容器内注水,直至注满水为止.图中水面的高度为,水面对应四边形的面积为,容器内水的体积为,则下列说法正确的是( )
    A. 是的函数B. 是的函数
    C. 是的函数D. 是的函数
    10. 定义在上的函数满足,则( )
    A. B.
    C. 为偶函数D. 可能在上单调递增
    11. 已知函数,且,则下列说法正确的是( )
    A. B.
    C. D. 的取值范围为
    三、填空题:本题共3小题,每小题5分,共15分.
    12. 已知是函数的极大值点,则__________.
    13. 已知函数,则不等式的解集为__________.
    14. 若不等式对恒成立,则的最大值为__________.
    四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.
    15. 已知或.
    (1)若命题是真命题,求实数取值范围;
    (2)若是的必要不充分条件,求实数的取值范围.
    16. 已知幂函数为偶函数,且函数满足.
    (1)求函数和的解析式;
    (2)对任意实数恒成立,求的取值范围.
    17. 已知函数.
    (1)若,求的最小值;
    (2)证明:曲线是中心对称图形.
    18. 已知函数.
    (1)讨论的导函数的单调性;
    (2)若对任意恒成立,求的取值范围.
    19. 已知函数,若存在实数,使得,则称与为“互补函数”,为“互补数”.
    (1)判断函数与是否为“互补函数”,并说明理由.
    (2)已知函数为“互补函数”,且为“互补数”.
    (i)是否存在,使得?说明理由.
    (ii)若,用的代数式表示的最大值.
    河北省名校联盟2023-2024学年高一下学期7月期末考试
    数学试题
    注意事项:
    1.答题前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上.
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.
    3.考试结束后,将本试卷和答题卡一并交回.
    4.本试卷主要考试内容:集合与常用逻辑用语、不等式、函数与导数.
    一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
    1. 若集合,,则( )
    A. B. C. D.
    【答案】B
    【解析】
    【分析】首先求出集合,再根据交集的定义计算可得.
    【详解】由,解得,
    所以,又,
    所以.
    故选:B
    2. 已知命题,命题,则( )
    A. 和都是真命题B. 和都是真命题
    C. 和都是真命题D. 和都是真命题
    【答案】B
    【解析】
    【分析】取出反例得到是假命题,是真命题,根据零点存在性定理判断得到方程有根,故是真命题,是假命题,得到答案.
    【详解】对于而言,取,则,故是假命题,是真命题.
    对于而言,令,,,
    由零点存在性定理可知,存在,使得,
    故是真命题,是假命题.
    综上,和都是真命题.
    故选:B
    3. 已知函数的导函数为,且,则( )
    A. 2B. C. 1D.
    【答案】A
    【解析】
    【分析】求出,令,代入即可求解.
    【详解】由题意得,令,则,得.
    故选:A
    4. 已知函数在上单调递增,则的取值范围是( )
    A. B. C. D.
    【答案】A
    【解析】
    【分析】先求出函数定义域,结合复合函数单调性得到不等式,求出,得到答案.
    【详解】由,得,所以的定义域为.
    又在上单调递增,且在上单调递增,
    所以解得,即的取值范围是.
    故选:A
    5. 已知,则下列判断正确的是( )
    A. B.
    C. D.
    【答案】D
    【解析】
    分析】利用对数运算和对数函数单调性得到,得到结论.
    【详解】,故,
    即.
    故选:D
    6. 已知为正实数,则“”是“”的( )
    A. 充要条件B. 充分不必要条件
    C 必要不充分条件D. 既不充分也不必要条件
    【答案】C
    【解析】
    【分析】举反例否定充分性,利用基本不等式证明必要性即可.
    【详解】若,则,但是,故充分性不成立,
    因为为正实数,所以.
    当且仅当时取等,若,则,故必要性成立,
    所以“”是“”的必要不充分条件,故C正确.
    故选:C
    7. 苏格兰数学家纳皮尔在研究天文学的过程中,为了简化大数之间的计算而发明了对数,利用对数运算可以求出大数的位数.已知,则是( )
    A. 11位数B. 10位数C. 9位数D. 8位数
    【答案】C
    【解析】
    【分析】设,两边取对数,根据指数和对数运算法则得到,得到结论.
    【详解】记,则,则,
    则,故是9位数.
    故选:C
    8. 若直线是曲线与的公切线,则直线的方程为( )
    A. B.
    C. D.
    【答案】A
    【解析】
    【分析】设出直线与曲线和的切点分别为和,由公切线得到方程解出切点坐标,计算求解即可.
    【详解】由,得,由,得.
    设直线与曲线相切于点,
    与曲线相切于点,
    则,故.又,
    解得,所以直线过点,斜率为1,
    即直线的方程为.
    故选:A
    二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.
    9. 如图所示,连接棱长为2的正方体各面的中心得到一个多面体容器,从顶点处向该容器内注水,直至注满水为止.图中水面的高度为,水面对应四边形的面积为,容器内水的体积为,则下列说法正确的是( )
    A. 是的函数B. 是的函数
    C. 是的函数D. 是的函数
    【答案】AC
    【解析】
    【分析】根据给定条件,利用函数的定义逐项判断即得.
    【详解】对于A,当水面的高度确定时,水面对应四边形的面积也唯一确定,则是的函数,A正确;
    对于B,当水面对应四边形的面积确定时,水面高度可能出现两种可能,则不是的函数,B错误;
    对于C,随的增大而增大,是的函数,也是的函数,因此是的函数,C正确;
    对于D,当水面对应四边形的面积确定时,可能出现两个值,不是的函数,D错误.
    故选:AC
    10. 定义在上的函数满足,则( )
    A. B.
    C. 为偶函数D. 可能在上单调递增
    【答案】ABD
    【解析】
    【分析】令赋值判断A; 令和赋值判断B; 令赋值判断C; 由,可得,令,求出,判断D.
    【详解】令,则,故A正确;
    令,则,即,
    令,则,即,故B正确;
    令,则,即,所以为奇函数,故C错误;
    当时,由,可得,
    令,则,此时在上单调递增,故D正确.
    故选:ABD.
    11. 已知函数,且,则下列说法正确的是( )
    A. B.
    C. D. 的取值范围为
    【答案】CD
    【解析】
    【分析】作出函数图像判断A,举反例判断B,转化为一元函数,利用二次函数的性质判断C,指数函数的性质判断D即可.
    【详解】结合函数的图象可知,,
    由,得不出,故A错误,
    令,此时,但是,故B错误.
    因为,所以,所以,则,
    又,所以,
    由二次函数性质得在上单调递增,故,所以C正确.
    因为,所以,故,
    令,由指数函数性质得在上单调递增,
    所以的取值范围为,故D正确.
    故选:CD
    【点睛】关键点点睛:本题考查求多变元表达式的范围,解题关键是合理利用函数图像找到变量关系,构造一元函数,然后利用指数函数的性质得到所要求的取值范围即可.
    三、填空题:本题共3小题,每小题5分,共15分.
    12. 已知是函数的极大值点,则__________.
    【答案】
    【解析】
    【分析】求出函数的导数,得到函数的单调区间,从而求出函数的极大值点即可.
    【详解】由题可知,
    令,则,解得,.
    当或时,,当时,,
    所以的单调递增区间为,单调递减区间为,
    故为极大值点.
    故答案为:.
    13. 已知函数,则不等式的解集为__________.
    【答案】
    【解析】
    【分析】利用函数的奇偶性,以及函数的单调性转化不等式为,即可求解.
    【详解】由题可知的定义域为,
    因为,所以是偶函数,
    当时,,
    所以,
    所以在上单调递增.
    由不等式,
    可得,,
    所以,
    解得,
    故不等式的解集为.
    故答案为:.
    14. 若不等式对恒成立,则的最大值为__________.
    【答案】
    【解析】
    【分析】先将不等式变形为,再把看成整体求解函数的值域,由不等式恒成立可得关于的不等关系,再利用不等关系表达所求式,并求其范围探究最值即可.
    【详解】由,可得.
    令,则在上单调递增,所以,
    由对恒成立,
    所以,则,故,
    当且仅当,即时,等号成立,故的最大值为3.
    故答案为:.
    四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.
    15. 已知或.
    (1)若命题是真命题,求实数的取值范围;
    (2)若是的必要不充分条件,求实数的取值范围.
    【答案】(1);
    (2).
    【解析】
    【分析】(1)根据题意得到是假命题,结合一元二次方程的性质,列出不等式即可求解;
    (2)根据(1)的结论,得出命题是真命题的范围,再将问题转化为集合间的真子集关系,从而得到不等式组即可求解.
    【小问1详解】
    因为命题是真命题,所以命题是假命题,即关于的方程无实数根.
    当时,方程无解,符合题意;
    当时,,解得.
    故实数的取值范围是.
    【小问2详解】
    由(1)知若命题是真命题,则或.
    因为命题是命题的必要不充分条件,
    所以或⫋或,
    则解得,
    所以实数的取值范围是.
    16. 已知幂函数为偶函数,且函数满足.
    (1)求函数和的解析式;
    (2)对任意实数恒成立,求的取值范围.
    【答案】(1),;
    (2).
    【解析】
    【分析】(1)根据函数为幂函数得到方程,结合函数的奇偶性得到,得到,,换元法得到的解析式;
    (2)变形得到,,换元后,利用基本不等式求出最小值,得到,求出答案.
    【小问1详解】
    由为幂函数,得,解得或.
    因为为偶函数,所以,
    则.
    由,可得,令,
    则,
    所以.
    【小问2详解】
    由,可得,
    故,,
    令,则,
    当且仅当1,即时,等号成立,
    所以,即,所以的取值范围为.
    17. 已知函数.
    (1)若,求的最小值;
    (2)证明:曲线是中心对称图形.
    【答案】(1);
    (2)证明见解析.
    【解析】
    【分析】(1)求出函数的导数,将问题转化为不等式恒成立问题,再利用分离参数法解决不等式恒成立问题,结合基本不等式即可求解;
    (2)利用函数自对称的性质即可求解.
    【小问1详解】
    由,得,
    因为,
    所以在上恒成立,即等价于即可,
    因为,
    当且仅当时,等号成立,所以,
    故的最小值为.
    小问2详解】
    由题可知,
    所以曲线关于点对称,即曲线是中心对称图形.
    18. 已知函数.
    (1)讨论的导函数的单调性;
    (2)若对任意恒成立,求的取值范围.
    【答案】(1)答案见解析;
    (2).
    【解析】
    【分析】(1)先求出的导函数,然后利用导数分类讨论分析函数的单调性即可;
    (2)对任意恒成立,求参数的取值范围问题,转化为利用导数分类讨论求解函数的最小值,判断最小值是否大于零即可.
    【小问1详解】
    由题可知.
    设,则.
    ①当时,上恒成立,
    所以在上单调递增.
    ②当时,令,得,令,得,
    所以在上单调递减,在上单调递增.
    综上所述,当时,是上的增函数,
    当时,在上是减函数,在上是增函数.
    【小问2详解】
    ①当时,在上单调递增,,
    则在上单调递增,故成立;
    ②当时,,所以在上单调递增,,
    则单调递增,故成立;
    ③当时,当时,在上单调递减,
    又,所以在上单调递减,则不成立.
    综上,的取值范围为.
    19. 已知函数,若存在实数,使得,则称与为“互补函数”,为“互补数”.
    (1)判断函数与是否为“互补函数”,并说明理由.
    (2)已知函数为“互补函数”,且为“互补数”.
    (i)是否存在,使得?说明理由.
    (ii)若,用的代数式表示的最大值.
    【答案】(1)不是“互补函数”,理由见解析;
    (2)(i)存在,理由见解析;(ii).
    【解析】
    【分析】(1)利用导数分别求出,的值域,由“互补函数”的定义判断即可;
    (2)(i)根据定义,可得,即可求解;(ii)根据条件可化简得,令,利用导数求出的单调性,从而可得的最大值.
    小问1详解】
    因为,则,
    所以在单调递增,在单调递减,则,所以,
    因为,则,
    所以在上单调递增,在上单调递减,所以,所以.
    故不存在实数,使得,则与不是“互补函数”.
    【小问2详解】
    (i)存在,使得.
    由,得,
    则,故存在.
    (ii)令,则,
    两式相加可得,
    两式相减可得
    所以,
    故.
    令,
    则.
    .
    因为,所以,
    故当时,,即在上是减函数.
    因为,
    所以的最大值为.
    相关试卷

    河北省保定市六校联盟2023-2024学年高二下学期4月期中联考数学试题(原卷版+解析版): 这是一份河北省保定市六校联盟2023-2024学年高二下学期4月期中联考数学试题(原卷版+解析版),文件包含河北省保定市六校联盟2023-2024学年高二下学期4月期中联考数学试题原卷版docx、河北省保定市六校联盟2023-2024学年高二下学期4月期中联考数学试题解析版docx等2份试卷配套教学资源,其中试卷共21页, 欢迎下载使用。

    河北省沧州市沧衡名校联盟2023-2024学年高三下学期4月模拟考试数学试题(原卷版+解析版): 这是一份河北省沧州市沧衡名校联盟2023-2024学年高三下学期4月模拟考试数学试题(原卷版+解析版),文件包含河北省沧州市沧衡名校联盟2023-2024学年高三下学期4月模拟考试数学试题原卷版docx、河北省沧州市沧衡名校联盟2023-2024学年高三下学期4月模拟考试数学试题解析版docx等2份试卷配套教学资源,其中试卷共26页, 欢迎下载使用。

    2024届河北省名校联盟高三下学期4月联考数学试题 (二)原卷及解析版: 这是一份2024届河北省名校联盟高三下学期4月联考数学试题 (二)原卷及解析版,文件包含2024届河北省名校联盟高三下学期4月联考数学试题二原卷版pdf、2024届河北省名校联盟高三下学期4月联考数学试题二解析版pdf等2份试卷配套教学资源,其中试卷共20页, 欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map