还剩3页未读,
继续阅读
[数学][期末]湖北省恩施州2023-2024学年八年级下学期期末数学试题
展开这是一份[数学][期末]湖北省恩施州2023-2024学年八年级下学期期末数学试题,共6页。试卷主要包含了填写答题卡的内容用2B铅笔填写,提前 xx 分钟收取答题卡等内容,欢迎下载使用。
考试时间:分钟 满分:分
姓名:____________ 班级:____________ 学号:____________
*注意事项:
1、填写答题卡的内容用2B铅笔填写
2、提前 xx 分钟收取答题卡
第Ⅰ卷 客观题
第Ⅰ卷的注释
一、选择题(本大题共有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求)(共10题;共30分)
1. 若式子在实数范围内有意义,则的取值范围是( )
A . B . C . D .
2. 下列图象中,不能表示是的函数的是( )
A . B . C . D .
3. 已知一个直角三角形两直角边长分别为3和4,则它的斜边长为( )
A . 5 B . 4 C . 3 D .
4. 如图,在中,、分别是、的中点.若 , 则的长是( )
A . 2 B . 3 C . 4 D . 5
5. 一俱乐部的篮球队有20名队员,统计所有队员的年龄制成如下统计表,表格不小心被某同学用水打湿了,看不清18岁和20岁队员的具体人数.
下列统计量中,不受影响的是( )
A . 中位数,方差 B . 众数,方差 C . 平均数,中位数 D . 中位数,众数
6. 下列二次根式中,是最简二次根式的是( )
A . B . C . D .
7. 已知正比例函数 , 下列结论正确的是( )
A . 图象经过第一、三象限 B . 图象是一条射线 C . 不论取何值,总有 D . 随的增大而减小
8. 下列命题中,其逆命题是真命题的是( )
A . 如果两个角是直角,那么它们相等 B . 全等三角形的对应角相等 C . 两直线平行,同位角相等 D . 若 , 那么
9. 如图,矩形中,是对角线的中点,连接 . 若 , , 则的长为( )
A . 7 B . 8 C . 9 D . 10
10. 关于的函数 , 给出下列结论:
①当时,此函数是一次函数;
②无论取什么值,函数图象必经过点;
③若图象经过二、三、四象限,则的取值范围是;
④若函数图象与轴的交点始终在正半轴,则的取值范围是 .
其中正确结论的序号是( )
A . ①②④ B . ①③④ C . ②③④ D . ①②③④
二、填空题(本大题共有5个小题,每小题3分,共15分.不要求写出解答过程,请把答案直接填写在答题卷相应位置上)(共5题;共15分)
11. ____________________.
12. 一个弹簧不挂重物时长 , 挂上的物体后,弹簧伸长 . 在弹性限度内,挂上重物后弹簧伸长的长度与所挂重物的质量成正比.则弹簧总长(单位:)关于所挂物体质量(单位:)的函数解析式为____________________.
13. 某班准备从甲、乙、丙三名学生中选取一名成绩稳定的同学参加学校跳远比赛.这三名学生5次测试的平均成绩恰好相同,方差分别是: , , , 那么应选____________________(选填“甲”“乙”或“丙”)去参加比赛.
14. 某日早晨9:00甲渔船以12海里/时的速度离开港口向东北方向航行,10:00乙渔船以10海里/时的速度离开港口沿某一方向航行.上午11:00两渔船相距26海里.则乙渔船航行的方向是____________________.
15. 如图,正方形的边长为3,为的中点,连接 , 于点 , 连接 . 则____________________.
第Ⅱ卷 主观题
第Ⅱ卷的注释
三、解答题(本大题共有9个小题,共75分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)(共9题;共75分)
16. 计算:
(1) ;
(2) .
17. 如图,在的网格中,每个小正方形边长都为1,的顶点均在格点上.求的度数.
18. 如图,菱形的对角线、相交于点 , 点和点在上,且 . 求证:四边形是菱形.
19. 为增强青少年的安全意识,某中学举行“防溺水知识竞赛”活动.随机抽取了部分学生的成绩作为样本,把成绩按A、B、C、D四个等级分别进行统计,并将所得数据绘制成如下不完整的统计图,如下图所示:
请根据图中提供的信息,解答下列问题:
(1) 在这次调查中,一共抽取了____________________名学生.
(2) 请补全条形统计图,扇形统计图中C等级所对圆心角的度数为_▲_.
(3) 该中学共有3000名学生,估计此次竞赛该校获A和B等级的总人数约有多少.
20. 如图,一次函数的图象交轴于点 , 的图象交轴于点 , 且两条直线交于点 .
(1) 求的面积.
(2) 结合图象,直接写出不等式的解集.
21. 如图,在正方形中,点、分别在、上,且 .
(1) 求证: .
(2) 若的面积为8,求的长.
22. 在实数的运算中,灵活运用多种方法,会给运算带来方便.比如:运用公式法,整体代入法等.
例1:计算 , 可以用公式来进行运算.即:
.
例2:已知 , 求代数式的值.
解:由得: , 所以 , 所以 , 所以 , 整体代入得: .
结合上述解题过程,完成下列题目:
(1) ____________________.
(2) 已知 , 求代数式的值.
(3) 已知 , 求代数式的值.
23. 在平行四边形中,平分 , 平分 , 点、在上.
(1) 如图1,当点、重合时,请你经过推理后直接填空:
①与的数量关系为:____________________;
②与的位置关系为:____________________;
③、、的关系式为:____________________.
(2) 如图2,当点在点左侧时,证明(1)中③的结论仍然成立.
(3) 如图3,当点在点右侧时,若 , , 则四边形的面积=____________________.
24. 如图1,将底角为 , 腰长为2的等腰置于平面直角坐标系中,腰与轴重合,底边与轴交于点 .
(1) 求所在直线的解析式.
(2) 如图2,将沿对折,点落在点处,判断四边形的形状并求出点的坐标.
(3) 如图3,在(2)的条件下,点、为线段上的两动点(不与点、重合),且 , 连接、 , 请求出的最小值及点的坐标. 题号
一
二
三
评分
阅卷人
得分
年龄(岁)
18岁
19岁
20岁
21岁
22岁
人数(个)
2
8
3
阅卷人
得分
阅卷人
得分
相关试卷
湖北省恩施州2023-2024学年八年级下学期期末数学试卷(含答案):
这是一份湖北省恩施州2023-2024学年八年级下学期期末数学试卷(含答案),共19页。试卷主要包含了单选题,解答题等内容,欢迎下载使用。
湖北省恩施州2023-2024学年八年级下学期期末数学试题(解析版):
这是一份湖北省恩施州2023-2024学年八年级下学期期末数学试题(解析版),共23页。
湖北省恩施州2023-2024学年八年级下学期期末数学试题:
这是一份湖北省恩施州2023-2024学年八年级下学期期末数学试题,共13页。试卷主要包含了关于的函数,给出下列结论等内容,欢迎下载使用。