2024年上海市中考真题数学试卷及答案
展开
这是一份2024年上海市中考真题数学试卷及答案,共7页。试卷主要包含了选择题,填空题,简答题等内容,欢迎下载使用。
1.如果x>y,那么下列正确的是( )
A.x+5≤y+5B.x﹣5<y﹣5C.5x>5yD.﹣5x>﹣5y
2.函数的定义域是( )
A.x=2B.x≠2C.x=3D.x≠3
3.以下一元二次方程有两个相等实数根的是( )
A.x2﹣6x=0B.x2﹣9=0C.x2﹣6x+6=0D.x2﹣6x+9=0
4.科学家同时培育了甲乙丙丁四种花,从甲乙丙丁选个开花时间最短的并且最平稳的是( )
A.甲种类B.乙种类C.丙种类D.丁种类
5.四边形ABCD为矩形,过A、C作对角线BD的垂线,过B、D作对角线AC的垂线.如果四个垂线拼成一个四边形,那这个四边形为( )
A.菱形B.矩形C.直角梯形D.等腰梯形
6.在△ABC中,AC=3,BC=4,AB=5,点P在ABC内,分别以ABP为圆心画圆,圆A半径为1,圆B半径为2,圆P半径为3,圆A与圆P内切,圆P与圆B的关系是( )
A.内含B.相交C.外切D.相离
二、填空题(每题4分,共48分)
7.计算:(4x2)3= .
8.计算:(a+b)(b﹣a)= .
9.已知,则x= .
10.科学家研发了一种新的蓝光唱片,一张蓝光唱片的容量约为2×105GB,一张普通唱片的容量约为25GB,则蓝光唱片的容量是普通唱片的 倍.(用科学记数法表示)
11.若正比例函数y=kx的图象经过点(7,﹣13),则y的值随x的增大而 .(选填“增大”或“减小”)
12.在菱形ABCD中,∠ABC=66°,则∠BAC= °.
13.某种商品的销售量y(万元)与广告投入x(万元)成一次函数关系,当投入10万元时销售额1000万元,当投入90万元时销售量5000万元.则投入80万元时,销售量为 万元.
14.一个袋子中有若干个白球和绿球,它们除了颜色外都相同.随机从中摸一个球,恰好摸到绿球的概率是,则袋子中至少有 个绿球.
15.如图,在平行四边形ABCD中,E为对角线AC上一点,设,,若AE=2EC,则= (结果用含,的式子表示).
16.博物馆为展品准备了人工讲解、语音播报和AR增强三种讲解方式,博物馆共回收有效问卷1000张,其中700人没有讲解需求,剩余300人中需求情况如图所示(一人可以选择多种).那么在总共2万人的参观中,需要AR增强讲解的人数约有 人.
17.在平行四边形ABCD中,∠ABC是锐角,将CD沿直线l翻折至AB所在直线,对应点分别为C′,D′,若AC′:AB:BC=1:3:7,则cs∠ABC= .
18.对于一个二次函数y=a(x﹣m)2+k(a≠0)中存在一点P(x′,y′),使得x′﹣m=y′﹣k≠0,则称2|x′﹣m|为该抛物线的“开口大小”,那么抛物线“开口大小”为 .
三、简答题(共78分,其中第19~22题每题10分,第23、24题每题12分,第25题14分)
19.计算:.
20.解方程组:.
21.在平面直角坐标系xOy中,反比例函数(k为常数且k≠0)上有一点A(﹣3,m),且与直线y=﹣2x+4交于另一点B(n,6).
(1)求k与m的值;
(2)过点A作直线l∥x轴与直线y=﹣2x+4交于点C,求sin∠OCA的值.
22.同学用两幅三角板拼出了如图的平行四边形,且内部留白部分也是平行四边形(直角三角板互不重叠).
(1)求:①两个直角三角形的直角边(结果用h表示);
②平行四边形的底、高和面积(结果用h表示);
(2)请画出同学拼出的另一种符合题意的图,要求:①不与给定的图形状相同;②画出三角形的边.
23.如图所示,在矩形ABCD中,E为边CD上一点,且AE⊥BD.
(1)求证:AD2=DE•DC;
(2)F为线段AE延长线上一点,且满足,求证:CE=AD.
24.在平面直角坐标系中,已知平移抛物线后得到的新抛物线经过和B(5,0).
(1)求平移后新抛物线的表达式;
(2)直线x=m(m>0)与新抛物线交于点P,与原抛物线交于点Q;
①如果PQ小于3,求m的取值范围;
②记点P在原抛物线上的对应点为P′,如果四边形P′BPQ有一组对边平行,求点P的坐标.
25.在梯形ABCD中,AD∥BC,点E在边AB上,且.
(1)如图1所示,点F在边CD上,且,联结EF,求证:EF∥BC;
(2)已知AD=AE=1;
①如图2所示,联结DE,如果△ADE外接圆的圆心恰好落在∠B的平分线上,求△ADE的外接圆的半径长;
②如图3所示,如果点M在边BC上,联结EM、DM、EC,DM与EC交于N.如果∠DMC=∠CEM,BC=4,且CD2=DM•DN,求边CD的长.
答 案
一、选择题
1. C
2. D
3. D
4. B
5. A
6. B
二、填空题
7. 64x6
8. b2﹣a2
9. 1
10. 8×103
11.减小
12. 57
13. 4500
14. 3
15.
16. 2000
17. 或
18. 4
三、简答题
19.
20. 或
21. (1)m=2;(2)
22.
(1)求:①两个直角三角形的直角边(结果用h表示);
②平行四边形的底、高和面积(结果用h表示);
(2)请画出同学拼出的另一种符合题意的图,要求:①不与给定的图形状相同;②画出三角形的边.
(1)①等腰直角三角板直角边为,含30°的直角三角形板直角边为2h和;
②平行四边形的底为,高为 ,面积为
(2)
23.(1)提示:
求证△ADE∽△BAD
∴
∴AD2=DE•BA
∵AB=DC
∴AD2=DE•DC
(2)提示:
在△ODA和△FEC中,
,
∴△ODA≌△FEC(AAS),
∴CE=AD
24.
(1)求平移后新抛物线的表达式;
(2)直线x=m(m>0)与新抛物线交于点P,与原抛物线交于点Q;
①如果PQ小于3,求m的取值范围;
②记点P在原抛物线上的对应点为P′,如果四边形P′BPQ有一组对边平行,求点P的坐标.
(1);
(2)①0<m<1;
②
25.(14分)在梯形ABCD中,AD∥BC,点E在边AB上,且.
(1)如图1所示,点F在边CD上,且,联结EF,求证:EF∥BC;
(2)已知AD=AE=1;
①如图2所示,联结DE,如果△ADE外接圆的圆心恰好落在∠B的平分线上,求△ADE的外接圆的半径长;
②如图3所示,如果点M在边BC上,联结EM、DM、EC,DM与EC交于N.如果∠DMC=∠CEM,BC=4,且CD2=DM•DN,求边CD的长.
(1)延长DE和CB交于点G
求证,
∴EF∥BC.
(2)①
②DC=种类
甲种类
乙种类
丙种类
丁种类
平均数
2.3
2.3
2.8
3.1
方差
1.05
0.78
1.05
0.78
相关试卷
这是一份2023年上海市中考数学真题及参考答案,共8页。试卷主要包含了 分解因式, 化简等内容,欢迎下载使用。
这是一份2023年上海市中考数学真题(含答案),共24页。
这是一份2018年上海市中考数学真题及答案,共10页。试卷主要包含了本试卷共25题, 计算等内容,欢迎下载使用。