2025年高考物理大一轮复习第十二章 第四课时 专题强化:电磁感应中的动力学和能量问题(课件+讲义+练习)
展开1、揣摩例题。课本上和老师讲解的例题,一般都具有一定的典型性和代表性。要认真研究,深刻理解,要透过“样板”,学会通过逻辑思维,灵活运用所学知识去分析问题和解决问题,特别是要学习分析问题的思路、解决问题的方法,并能总结出解题的规律。 2、精练习题。复习时不要搞“题海战术”,应在老师的指导下,选一些源于课本的变式题,或体现基本概念、基本方法的基本题,通过解题来提高思维能力和解题技巧,加深对所学知识的深入理解。在解题时,要独立思考,一题多思,一题多解,反复玩味,悟出道理。 3、加强审题的规范性。每每大考过后,总有同学抱怨没考好,纠其原因是考试时没有注意审题。审题决定了成功与否,不解决这个问题势必影响到高考的成败。那么怎么审题呢? 应找出题目中的已知条件 ;善于挖掘题目中的隐含条件 ;认真分析条件与目标的联系,确定解题思路 。 4、重视错题。“错误是最好的老师”,但更重要的是寻找错因,及时进行总结,三五个字,一两句话都行,言简意赅,切中要害,以利于吸取教训,力求相同的错误不犯第二次。
专题强化:电磁感应中的动力学和能量问题
考点一 电磁感应中的动力学问题
考点二 电磁感应中的能量问题
电磁感应中的动力学问题
1.导体的两种运动状态
2.用动力学观点解答电磁感应问题的一般步骤
3.导体常见运动情况的动态分析
例1 (多选)如图所示,U形光滑金属导轨与水平面成37°角倾斜放置,现将一金属杆垂直放置在导轨上且与两导轨接触良好,在与金属杆垂直且沿着导轨向上的外力F的作用下,金属杆从静止开始做匀加速直线运动。整个装置处于垂直导轨平面向上的匀强磁场中,外力F的最小值为8 N,经过2 s金属杆运动到导轨最上端并离开导轨。
已知U形金属导轨两轨道之间的距离为1 m,导轨电阻可忽略不计,金属杆的质量为1 kg、电阻为1 Ω,磁感应强度大小为1 T,重力加速度g=10 m/s2,sin 37°=0.6,cs 37°=0.8。下列说法正确的是A.拉力F是恒力B.拉力F随时间t均匀增加C.金属杆运动到导轨最上端时拉力F为12 ND.金属杆运动的加速度大小为2 m/s2
t=0时,F最小,代入数据可求得a=2 m/s2,选项D正确;t=2 s时,代入数据解得F=12 N,选项C正确。
例2 如图所示,两平行金属导轨水平放入磁感应强度为B、方向竖直向上的匀强磁场中,导轨间距为L,导轨左端接有一电容为C的平行板电容器。一质量为m的金属棒ab垂直放在导轨上,在水平恒力F的作用下从静止开始运动。棒与导轨接触良好,不计金属棒和导轨的电阻以及金属棒和导轨间的摩擦。求金属棒的加速度并分析金属棒的运动性质。
运动过程分析:取一极短时间Δt,棒做加速运动,持续对电容器充电,则存在充电电流。
拓展1.若金属导轨平面与水平面成θ角,匀强磁场垂直导轨平面向上。已知重力加速度为g,又让金属棒从导轨上端由静止开始下滑,求金属棒下滑过程中的加速度大小。
2.在拓展1中,若金属棒与导轨之间的动摩擦因数为μ(μ
可在导轨上无摩擦滑动,滑动过程中金属棒与导轨保持垂直且接触良好,在t=0时刻,两金属棒都处于静止状态,现有一与导轨平行、大小为F=2.0 N恒力作用于金属棒MN上,使金属棒MN在导轨上滑动,经过t=10 s,金属棒MN的加速度a=1.6 m/s2,求:(1)此时金属棒PQ的加速度是多少?
答案 0.4 m/s2
恒力作用于MN棒,使其在导轨上向右加速运动,切割磁感线产生感应电流,根据右手定则知电流方向为M→N,电流流经PQ,根据左手定则知MN所受安培力水平向左,PQ受到的安培力水平向右,它们都做加速运动,对MN由牛顿第二定律得F-BIL=ma,对PQ由牛顿第二定律得BIL=ma′,联立解得a′=0.4 m/s2。
(2)此时金属棒MN、PQ的速度各是多少?
答案 18 m/s 2 m/s
(3)金属棒MN和PQ的最大速度差是多少?
MN棒做加速度减小的加速运动,PQ棒做加速度增大的加速运动,最终有共同加速度,设两金属棒的共同加速度为a共,对系统有F=2ma共,对PQ棒有BImL=ma共,
联立解得Δvm=40 m/s。
有恒定外力等间距双棒模型
1.电磁感应中的能量转化
2.求解焦耳热Q的三种方法
3.解题的一般步骤(1)确定研究对象(导体棒或回路);(2)弄清电磁感应过程中哪些力做功,以及哪些形式的能量相互转化;(3)根据功能关系或能量守恒定律列式求解。
例4 (2024·广东省模拟)如图甲所示,光滑的金属导轨MN和PQ平行,间距L=1.0 m,与水平面之间的夹角α=37°,匀强磁场磁感应强度B=2.0 T,方向垂直于导轨平面向上,MP间接有阻值R=1.6 Ω的电阻,质量m=0.5 kg、接入电路的电阻r=0.4 Ω的金属棒ab垂直导轨放置,现用和导轨平行的恒力F沿导轨平面向上拉金属棒ab,使其由静止开始运动,当金属棒上滑的位移s=3.8 m时达到稳定状态,对应过程的v-t图像如图乙所示。
取g=10 m/s2,导轨足够长(sin 37°=0.6,cs 37°=0.8)。求:(1)运动过程中a、b哪端电势高,并计算恒力F的大小;
答案 b端电势高 5 N
(2)从金属棒开始运动到刚达到稳定状态,此过程金属棒上产生的焦耳热。
例5 如图所示,粗细均匀的正方形导线框abcd放在倾角为θ=30°的绝缘光滑斜面上,通过轻质细线绕过光滑的定滑轮与木块相连,细线和线框共面、与cd垂直且与斜面平行。距线框cd边为L0的MNQP区域存在着垂直于斜面、大小相等、方向相反的两个匀强磁场,EF为两个磁场的分界线,ME=EP=L2。现将木块由静止释放后,木块下降,线框沿斜面上滑,恰好匀速进入和离开匀强磁场。已知线框边长为L1(L1
导线框与木块通过细线相连,线框匀速进入磁场时,木块匀速下降,根据平衡条件有FT=mg
对导线框和木块构成的系统,进入磁场前二者一起做匀加速直线运动,根据牛顿第二定律有
(2)导线框通过匀强磁场过程中线框中产生的焦耳热Q。
导线框恰好匀速进入和离开匀强磁场,导线框通过匀强磁场过程中,线框和木块组成的系统减少的重力势能转化为电路中产生的焦耳热,根据能量守恒定律得Q=mg(2L2+L1)-mg(2L2+L1)sin θ,所以导线框通过匀强磁场过程中线框中产生的焦耳热Q= mg(2L2+L1)。
1.如图所示,在一匀强磁场中有一U形导线框abcd,线框处于水平面内,磁场与线框平面垂直,R为一电阻,ef为垂直于ab的一根导体杆,它可在ab、cd上无摩擦地滑动。杆ef及线框的电阻不计,开始时,给ef一个向右的初速度,则A.ef将减速向右运动,但不是匀减速运动B.ef将匀减速向右运动,最后停止C.ef将匀速向右运动D.ef将往返运动
ef向右运动,切割磁感线,产生感应电动势和感应电流,会受到向左的安培力而做减速运动,由F=BIL= =ma知,ef做的是加速度减小的减速运动,最终停止运动,故A正确,B、C、D错误。
2.如图,在光滑水平桌面上有一边长为L、电阻为R的正方形导线框;在导线框右侧有一宽度为d(d>L)的条形匀强磁场区域,磁场的边界与导线框的一边平行,磁场方向竖直向下,导线框以某一初速度向右运动,t=0时导线框的右边恰与磁场的左边界重合,随后导线框进入并通过磁场区域。下列v-t图像中,正确描述上述过程的可能是
3.(2023·陕西咸阳市模拟)如图,矩形闭合导体线框在匀强磁场上方,由不同高度静止释放,用t1、t2分别表示线框ab边和cd边刚进入磁场的时刻。线框下落过程形状不变,ab边始终保持与磁场水平边界线OO′平行,线框平面与磁场方向垂直。设OO′下方磁场区域足够大,不计空气阻力影响,则下列图像不可能反映线框下落过程中速度v随时间t变化的规律的是
线框先做自由落体运动,t1时刻ab边进入磁场做减速运动,加速度逐渐减小,而A图像中的加速度逐渐增大,故A错误;线框先做自由落体运动,若进入磁场时重力小于安培力,ab边进入磁场后做减速运动,当加速度减小到零时做匀速直线运动,cd边进入磁场后线框做自由落体运动,加速度为g,故B正确;
线框先做自由落体运动,ab边进入磁场时若重力大于安培力,做加速度减小的加速运动,cd边进入磁场后线框做自由落体运动,加速度为g,故C正确;线框先做自由落体运动,ab边进入磁场时若重力等于安培力,做匀速直线运动,cd边进入磁场后,线框继续做自由落体运动,加速度为g,故D正确。
4.(2023·江苏盐城市模拟)如图所示,MN和PQ是竖直放置的两根平行光滑金属导轨,导轨足够长且电阻不计,MP间接定值电阻R,金属杆cd保持与导轨垂直且接触良好。杆cd由静止开始下落并计时,杆cd两端的电压U、杆cd所受安培力的大小F随时间t变化的图像,以及通过杆cd的电流I、杆cd加速度的大小a随杆的速率v变化的图像,合理的是
5.(多选)如图所示,两根间距为d的足够长光滑金属导轨,平行放置在倾角为θ=30°的绝缘斜面上,导轨的右端接有电阻R,整个装置放在磁感应强度大小为B的匀强磁场中,磁场方向垂直于导轨平面向上。导轨上有一质量为m、电阻也为R的导体棒与两导轨垂直且接触良好,导体棒以一定的初速度v0在沿着导轨上滑一段距离L后返回,不计导轨电阻及感应电流间的相互作用,重力加速度为g。
导体棒返回时先做加速度减小的加速运动,最后受力平衡,做匀速直线运动,所以A正确;
6.(多选)如图甲所示,两间距为L的平行光滑金属导轨固定在水平面内,左端用导线连接,导轨处在竖直向上的匀强磁场中,一根长度也为L、电阻为R的金属棒放在导轨上,在平行于导轨向右、大小为F的恒力作用下向右运动,金属棒运动过程中,始终与导轨垂直并接触良好,金属棒运动的加速度与速度的关系如图乙所示,不计金属导轨及左边导线电阻,金属导轨足够长,若图乙中的a0、v0均为已知量,则下列说法正确的是
7.(2023·黑龙江哈尔滨市第九中学模拟)如图甲所示,MN、PQ两条平行的光滑金属轨道与水平面成θ=30°角固定,间距为L=1 m,质量为m的金属杆ab垂直放置在轨道上且与轨道接触良好,其阻值忽略不计。空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度大小为B=0.5 T。P、M间接有阻值为R1的定值电阻,Q、N间接电阻箱R。现从静止释放ab,改变电阻箱的阻值R,测得金属棒ab最大速度为vm,得到 的关系如图乙所示。若轨道足够长且电阻不计,重力加速度g取10 m/s2,则A.金属杆中感应电流方向由a指向bB.金属杆所受的安培力沿轨道向下C.定值电阻的阻值为1 ΩD.金属杆的质量为1 kg
由右手定则可判断,金属杆中感应电流方向由b指向a,由左手定则知,金属杆所受的安培力沿轨道向上,A、B错误;
8.(多选)如图所示,绝缘的水平面上固定有两条平行的光滑金属导轨,导轨电阻不计,两相同金属棒a、b垂直导轨放置,其右侧矩形区域内存在恒定的匀强磁场,磁场方向竖直向上,现两金属棒分别以初速度2v0和v0同时沿导轨自由运动,先后进入磁场区域。已知a棒离开磁场区域时b棒已经进入磁场区域,则a棒从进入到离开磁场区域的过程中,电流i随时间t的变化图像可能正确的有
10.(2023·湖北省联考)如图所示,足够长、电阻不计的平行光滑金属导轨MN、PQ相距为L,导轨平面与水平面间的夹角为θ。导轨上端与阻值为R的电阻和电容为C的电容器相接,导轨处于匀强磁场中,磁感应强度大小为B,方向垂直于导轨平面向上,一质量为m、电阻为R、长度为L的金属棒ab垂直于MN、PQ放置在导轨上,金属棒ab始终与导轨接触良好。现将开关S闭合,金属棒由静止开始运动。已知重力加速度为g。(1)求金属棒沿导轨匀速滑行时的速度大小v;
(2)金属棒沿导轨匀速运动后,将开关S断开并开始计时,求此后金属棒的速度大小v′随时间t变化的关系。
设时间Δt内金属棒增大的感应电动势ΔE=BL·Δv
求得电路中电流I′=BLCa对金属棒根据牛顿第二定律有
11.(2023·陕西渭南市期末)如图所示,足够长的平行金属导轨MN、PQ倾斜放置,处在与导轨平面垂直的匀强磁场中,导轨间距L=1 m。导轨平面与水平面的夹角θ=37°,匀强磁场的磁感应强度大小B=2 T,ab、cd两金属棒放在导轨上与导轨垂直并处于静止状态,两金属棒的长度均为L=1 m,电阻均为R=5 Ω,质量均为0.5 kg,导轨电阻不计,重力加速度g取10 m/s2。
若使金属棒ab以v1=1 m/s的速度沿导轨向下匀速运动,则金属棒cd恰好要滑动;现使金属棒ab从静止开始向上做初速度为零的匀加速直线运动,加速度的大小a=8 m/s2,金属棒运动过程中始终与导轨垂直并接触良好,两金属棒与导轨间的动摩擦因数相同,最大静摩擦力等于滑动摩擦力,sin 37°=0.6,cs 37°=0.8。求:(1)金属棒与导轨间的动摩擦因数μ;
根据题意,金属棒ab以v1=1 m/s的速度沿导轨向下匀速运动,则金属棒cd恰好要滑动,设金属棒cd所受安培力大小为F安′,则对金属棒cd根据平衡条件有F安′+mgsin 37°=μmgcs 37°
联立解得μ=0.85。
(2)从静止开始,金属棒ab向上加速运动多长时间,金属棒cd刚好要滑动;
设金属棒ab向上运动的速度达到v2时,金属棒cd刚要开始运动,此时金属棒cd所受安培力为F安,则根据平衡条件有F安=mgsin θ+μmgcs θ
联立解得v2=16 m/s
(3)已知金属棒ab向上匀加速运动至金属棒cd刚好要滑动的过程中,拉力对金属棒ab所做的功W=234.4 J。则此过程中,金属棒cd中通过的电荷量及产生的焦耳热。
答案 3.2 C 34 J
代入数据解得Q=34 J。
12.(多选)(2023·山东卷·12)足够长U形导轨平置在光滑水平绝缘桌面上,宽为1 m,电阻不计。质量为1 kg、长为1 m、电阻为1 Ω的导体棒MN放置在导轨上,与导轨形成矩形回路并始终接触良好,Ⅰ和Ⅱ区域内分别存在竖直方向的匀强磁场,磁感应强度分别为B1和B2,其中B1=2 T,方向向下。用不可伸长的轻绳跨过固定轻滑轮将导轨CD段中点与质量为0.1 kg的重物相连,绳与CD垂直且平行于桌面。如图所示,某时刻MN、CD同时分别进入磁场区域Ⅰ和Ⅱ并做匀速直线运动,MN、CD与磁场边界平行。MN的速度v1=2 m/s,CD的速度为v2且v2>v1,MN和导轨间的动摩擦因数为0.2。重力加速度大小取10 m/s2,下列说法正确的是A.B2的方向向上 B.B2的方向向下C.v2=5 m/s D.v2=3 m/s
第十二章 第四课时 专题强化:电磁感应中的动力学和能量问题2025版高考物理一轮复习课件+测试(教师版)+测试(学生版): 这是一份第十二章 第四课时 专题强化:电磁感应中的动力学和能量问题2025版高考物理一轮复习课件+测试(教师版)+测试(学生版),文件包含第十二章第4课时专题强化电磁感应中的动力学和能量问题pptx、第十二章第4课时专题强化电磁感应中的动力学和能量问题docx、第十二章第4课时专题强化电磁感应中的动力学和能量问题学生用docx等3份课件配套教学资源,其中PPT共60页, 欢迎下载使用。
2025高考物理一轮总复习第12章电磁感应专题强化18电磁感应中的动力学和能量问题课件: 这是一份2025高考物理一轮总复习第12章电磁感应专题强化18电磁感应中的动力学和能量问题课件,共39页。PPT课件主要包含了核心考点·重点突破,ABD,跟踪训练,电磁感应中的能量问题等内容,欢迎下载使用。
2024届高考物理一轮复习(新教材鲁科版)第十二章电磁感应专题强化二十四电磁感应中的动力学和能量问题课件: 这是一份2024届高考物理一轮复习(新教材鲁科版)第十二章电磁感应专题强化二十四电磁感应中的动力学和能量问题课件,共60页。PPT课件主要包含了答案Q=CBLv,电磁感应中的能量问题,课时精练,则下列说法正确的是,答案0016J,答案1ms2,答案2ms,答案075J,答案11m等内容,欢迎下载使用。