2024年安徽省中考数学真题试卷及答案解析
展开
这是一份2024年安徽省中考数学真题试卷及答案解析,共26页。
2.本试卷包括“试题卷”和“答题卷”两部分.“试题卷”共4页,“答题卷”共6页.
3.请务必在“答题卷”上答题,在“试题卷”上答题是无效的.
4.考试结束后,请将“试题卷”和“答题卷”一并交回.审核:魏敬德老师
一、选择题(本大题共10小题,每小题4分,满分40分)
每小题都给出A,B,C,D四个选项,其中只有一个是符合题目要求的.
1. ﹣5的绝对值是()
A. 5B. ﹣5C. D.
2. 据统计,年我国新能汽车产量超过万辆,其中万用科学记数法表示为( )
A. B. C. D.
3. 某几何体的三视图如图所示,则该几何体为()
A. B.
C. D.
4. 下列计算正确的是()
A. B.
C. D.
5. 若扇形的半径为6,,则的长为()
A. B. C. D.
6. 已知反比例函数与一次函数的图象的一个交点的横坐标为3,则k的值为()
A. B. C. 1D. 3
7. 如图,在中,,点在的延长线上,且,则的长是( )
A. B. C. D.
8. 已知实数a,b满足,,则下列判断正确的是()
A. B.
C. D.
9. 在凸五边形中,,,F是的中点.下列条件中,不能推出与一定垂直的是()
A. B.
C. D.
10. 如图,在中,,,,是边上的高.点E,F分别在边,上(不与端点重合),且.设,四边形的面积为y,则y关于x的函数图象为()
A. B.
C. D.
二、填空题(本大题共4小题,每小题5分,满分20分)
11. 若代数式有意义,则实数的取值范围是_____.
12. 我国古代数学家张衡将圆周率取值为,祖冲之给出圆周率的一种分数形式的近似值为.比较大小:______(填“>”或“
【解析】
【分析】本题考查的是实数的大小比较,先比较两个正数的平方,从而可得答案.
【详解】解:∵,,
而,
∴,
∴;
故答案为:
13. 【答案】
【解析】
【分析】本题考查了用树状图或列表法求概率,画出树状图即可求解,掌握树状图或列表法是解题的关键.
详解】解:画树状图如下:
由树状图可得,共有种等结果,其中恰为个红球的结果有种,
∴恰为个红球的概率为,
故答案为:.
14. 【答案】 ①. ## ②.
【解析】
【分析】①连接,根据正方形的性质每个内角为直角以及折叠带来的折痕与对称点连线段垂直的性质,再结合平行线的性质即可求解;
②记与交于点K,可证:,则,,由勾股定理可求,由折叠的性质得到:,,,,,则,,由,得,继而可证明,由等腰三角形的性质得到,故.
【详解】解:①连接,由题意得,,
∵,
∴,
∴,
∵四边形是正方形,
∴,
∴,,
∴,,
∴
∴,
故答案为:;
②记与交于点K,如图:
∵四边形是正方形,四边形是正方形,
∴,,,
∴,
∴,
∴,
同理可证:,
∴,,
在中,由勾股定理得,
由题意得:,,,,,
∴,
∴,
∴,
∴,
∴,
即,
∵,
∴,
∴,
∴,
∴,
由题意得,而,
∴,
∴,
故答案为:.
【点拨】本题考查了正方形的性质,折叠的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理,等腰三角形的判定与性质,熟练掌握知识点,正确添加辅助线是解决本题的关键.
三、(本大题共2小题,每小题8分,满分16分)
15. 【答案】,
【解析】
【分析】先移项,然后利用因式分解法解一元二次方程,即可求出答案.
【详解】解:∵,
∴,
∴,
∴,.
【点拨】本题考查了解一元二次方程,解题的关键是掌握解一元二次方程的方法进行解题.
16. 【答案】(1)见详解(2)40
(3)(答案不唯一)
【解析】
【分析】本题主要考查了画旋转图形,平行四边形的判定以及性质,等腰三角形的判定以及性质等知识,结合网格解题是解题的关键.
(1)将点A,B,C分别绕点D旋转得到对应点,即可得出.
(2)连接,,证明四边形是平行四边形,利用平行四边形性质以及网格求出面积即可.
(3)根据网格信息可得出,,即可得出是等腰三角形,根据三线合一的性质即可求出点E的坐标.
【小问1详解】
解:如下图所示:
【小问2详解】
连接,,
∵点B与,点C与分别关于点D成中心对称,
∴,,
∴四边形是平行四边形,
∴.
【小问3详解】
∵根据网格信息可得出,,
∴是等腰三角形,
∴也是线段的垂直平分线,
∵B,C的坐标分别为,,
∴点,
即.(答案不唯一)
四、(本大题共2小题,每小题8分,满分16分)
17. 【答案】农作物的种植面积为公顷,农作物的种植面积为公顷.
【解析】
【分析】本题考查了二元一次方程组的应用,设农作物的种植面积为公顷,农作物的种植面积为公顷,根据题意列出二元一次方程组即可求解,根据题意,找到等量关系,正确列出二元一次方程组是解题的关键.
【详解】解:设农作物的种植面积为公顷,农作物的种植面积为公顷,
由题意可得,,
解得,
答:设农作物的种植面积为公顷,农作物的种植面积为公顷.
18. 【答案】(1)(),;();
(2)
【解析】
【分析】()()根据规律即可求解;()根据规律即可求解;
()利用完全平方公式展开,再合并同类项,最后提取公因式即可;
本题考查了平方差公式,完全平方公式,掌握平方差公式和完全平方公式的运算是解题的关键.
【小问1详解】
()由规律可得,,
故答案为:,;
()由规律可得,,
故答案为:;
【小问2详解】
解:假设,其中均为自然数.
分下列三种情形分析:
若均为偶数,设,,其中均为自然数,
则为的倍数.
而不是的倍数,矛盾.故不可能均为偶数.
若均为奇数,设,,其中均为自然数,
则为的倍数.
而不是的倍数,矛盾.故不可能均为奇数.
若一个是奇数一个是偶数,则为奇数.
而是偶数,矛盾.故不可能一个是奇数一个是偶数.
由可知,猜测正确.
故答案为:.
五、(本大题共2小题,每小题10分,满分20分)
19. 【答案】
【解析】
【分析】本题考查了解直角三角形,勾股定理,三角函数,过点于,则,,由题意可得,,,,
解求出、,可求出,再由勾股定理可得,进而得到,即可求解,正确作出辅助线是解题的关键.
【详解】解:过点于,则,,由题意可得,,,,
在中,,,
∴,,
∴,
∴在,,
∴,
∴.
20. 【答案】(1)见详解(2).
【解析】
【分析】本题主要考查了等腰三角形的性质,圆周角定理,勾股定理等知识,掌握这些性质以及定理是解题的关键.
(1)由等边对等角得出,由同弧所对的圆周角相等得出,由对顶角相等得出,等量代换得出,由角平分线的定义可得出,由直径所对的圆周角等于可得出,即可得出,即.
(2)由(1)知,,根据等边对等角得出,根据等腰三角形三线合一的性质可得出,的值,进一步求出,,再利用勾股定理即可求出.
【小问1详解】
证明:∵,
∴,
又与都是所对的圆周角,
∴,
∵,
∴,
∵平分,
∴,
∵直径,
∴,
∴,
故,
即.
【小问2详解】
由(1)知,,
∴,
又,,
∴,,
∴圆的半径,
∴,
在中.
,
∴
即的长为.
六、(本题满分12分)
21. 【答案】任务1:40;任务2:6;任务3:①;任务4:乙园的柑橘品质更优,理由见解析
【解析】
【分析】题目主要考查统计表及频数分布直方图,平均数、中位数及众数的求法,根据图标获取相关信息是解题关键.
任务1:直接根据总数减去各部分的数据即可;
任务2:根据加权平均数的计算方法求解即可;
任务3:根据中位数、众数的定义及样本中的数据求解即可;
任务4:分别计算甲和乙的一级率,比较即可.
【详解】解:任务1:;
任务2:,
乙园样本数据的平均数为6;
任务3:①∵,
∴甲园样本数据的中位数在C组,
∵,
∴乙园样本数据的中位数在C组,故①正确;
②由样本数据频数直方图得,甲园样本数据的众数均在B组,乙园样本数据的众数均在C组,故②错误;
③无法判断两园样本数据的最大数与最小数的差是否相等,故③错误;
故答案为:①;
任务4:甲园样本数据的一级率为:,
乙园样本数据的一级率为:,
∵乙园样本数据的一级率高于甲园样本数据的一级率,
∴乙园的柑橘品质更优.
七、(本题满分12分)
22. 【答案】(1)见详解(2)(ⅰ)见详解,(ⅱ)
【解析】
【分析】(1)利用平行四边形的性质得出,再证明是平行四边形,再根据平行四边形的性质可得出,再利用证明,利用全等三角形的性质可得出.
(2)(ⅰ)由平行线截线段成比例可得出,结合已知条件等量代换,进一步证明,由相似三角形的性质可得出,即可得出.(ⅱ)由菱形的性质得出,进一步得出,,进一步可得出,进一步得出,同理可求出,再根据即可得出答案.
【小问1详解】
证明:∵四边形是平行四边形,
∴,,
∴,
又∵,
∴四边形是平行四边形,
∴,
∴.
在与中,
∴.
∴.
【小问2详解】
(ⅰ)∵
∴,
又.,
∴,
∵,
∴,
∴,
∴
(ⅱ)∵是菱形,
∴,
又,,
∴,
∴,
∵.,
∴,
∴,
即,
∴,
∴,
∵,,,
∴,
∴,
即,
∴
∴,
故.
【点拨】本题主要考查了平行四边形的判定以及性质,全等三角形判定以及性质,相似三角形的判定以及性质,平行线截线段成比例以及菱形的性质,掌握这些判定方法以及性质是解题的关键.
八、(本题满分14分)
23. 【答案】(1)
(2)(ⅰ)3;(ⅱ)
【解析】
【分析】题目主要考查二次函数的性质及化为顶点式,解一元二次方程,理解题意,熟练掌握二次函数的性质是解题关键.
(1)根据题意求出的顶点为,确定抛物线(b为常数)的顶点横坐标为2,即可求解;
(2)根据题意得出,,然后整理化简;(ⅰ)将代入求解即可;(ⅱ)将代入整理为顶点式,即可得出结果.
【小问1详解】
解:,
∴的顶点为,
∵抛物线(b为常数)的顶点横坐标比抛物线的顶点横坐标大1,
∴抛物线(b为常数)的顶点横坐标为2,
∴,
∴;
【小问2详解】
由(1)得
∵点在抛物线上,点在抛物线上.
∴,,
整理得:
(ⅰ)∵,
∴,
整理得:,
∵,,
∴,
∴;
(ⅱ)将代入,
整理得,
∵,
∴当,即时,h取得最大值为.
农作物品种
每公顷所需人数
每公顷所需投入资金(万元)
奇数
的倍数
表示结果
一般结论
______
假设,其中均为自然数.
分下列三种情形分析:
若均为偶数,设,,其中均为自然数,
则为的倍数.
而不是的倍数,矛盾.故不可能均为偶数.
若均为奇数,设,,其中均为自然数,
则______为的倍数.
而不是的倍数,矛盾.故不可能均为奇数.
若一个是奇数一个是偶数,则为奇数.
而是偶数,矛盾.故不可能一个是奇数一个是偶数.
由可知,猜测正确.
组别
A
B
C
D
E
x
相关试卷
这是一份2022年安徽省中考数学真题试卷含解析,共34页。
这是一份2021年安徽省中考数学真题试卷含解析,共24页。
这是一份2023年安徽省中考数学真题试卷(解析版),共29页。