新高考数学一轮复习课件 第8章 §8.3 圆的方程(含详解)
展开1.理解确定圆的几何要素,在平面直角坐标系中,掌握圆的标准方程与一般方程.2.能根据圆的方程解决一些简单的数学问题与实际问题.
1.圆的定义和圆的方程
2.点与圆的位置关系平面上的一点M(x0,y0)与圆C:(x-a)2+(y-b)2=r2之间存在着下列关系:(1)|MC|>r⇔M在______,即(x0-a)2+(y0-b)2>r2⇔M在圆外;(2)|MC|=r⇔M在______,即(x0-a)2+(y0-b)2=r2⇔M在圆上;(3)|MC|
判断下列结论是否正确(请在括号中打“√”或“×”)(1)确定圆的几何要素是圆心与半径.( )(2)(x-2)2+(y+1)2=a2(a≠0)表示以(2,1)为圆心,a为半径的圆.( )(3)方程Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆的充要条件是A=C≠0,B=0,D2+E2-4AF>0.( )
1.圆心为(1,1)且过原点的圆的方程是A.(x-1)2+(y-1)2=1B.(x+1)2+(y+1)2=1C.(x+1)2+(y+1)2=2D.(x-1)2+(y-1)2=2
2.若曲线C:x2+y2+2ax-4ay-10a=0表示圆,则实数a的取值范围为A.(-2,0)B.(-∞,-2)∪(0,+∞)C.[-2,0]D.(-∞,-2]∪[0,+∞)
由x2+y2+2ax-4ay-10a=0,得(x+a)2+(y-2a)2=5a2+10a,由该曲线表示圆,可知5a2+10a>0,解得a>0或a<-2.
3.(多选)下列各点中,在圆(x-1)2+(y+2)2=25的内部的是A.(0,2) B.(3,3)C.(-2,2) D.(4,1)
由(0-1)2+(2+2)2<25知(0,2)在圆内;由(3-1)2+(3+2)2>25知(3,3)在圆外;由(-2-1)2+(2+2)2=25知(-2,2)在圆上,由(4-1)2+(1+2)2<25知(4,1)在圆内.
例1 (1)(2022·全国乙卷)过四点(0,0),(4,0),(-1,1),(4,2)中的三点的一个圆的方程为__________________________________________________________________________________.
(x-2)2+(y-3)2=13或(x-2)2+(y-1)2=5
依题意设圆的方程为x2+y2+Dx+Ey+F=0,其中D2+E2-4F>0.若过(0,0),(4,0),(-1,1),
所以圆的方程为x2+y2-4x-6y=0,即(x-2)2+(y-3)2=13;
若过(0,0),(4,0),(4,2),
所以圆的方程为x2+y2-4x-2y=0,即(x-2)2+(y-1)2=5;
若过(0,0),(4,2),(-1,1),
若过(-1,1),(4,0),(4,2),
(2)(2022·全国甲卷)设点M在直线2x+y-1=0上,点(3,0)和(0,1)均在⊙M上,则⊙M的方程为___________________.
(x-1)2+(y+1)2=5
方法一 设⊙M的方程为(x-a)2+(y-b)2=r2,
∴⊙M的方程为(x-1)2+(y+1)2=5.
方法二 设⊙M的方程为x2+y2+Dx+Ey+F=0(D2+E2-4F>0),
∴⊙M的方程为x2+y2-2x+2y-3=0,即(x-1)2+(y+1)2=5.
方法三 设A(3,0),B(0,1),⊙M的半径为r,
∴M(1,-1),∴r2=|MA|2=(3-1)2+[0-(-1)]2=5,∴⊙M的方程为(x-1)2+(y+1)2=5.
求圆的方程的常用方法(1)直接法:直接求出圆心坐标和半径,写出方程.(2)待定系数法①若已知条件与圆心(a,b)和半径r有关,则设圆的标准方程,求出a,b,r的值;②选择圆的一般方程,依据已知条件列出关于D,E,F的方程组,进而求出D,E,F的值.
跟踪训练1 (1)圆心在y轴上,半径长为1,且过点A(1,2)的圆的方程是A.x2+(y-2)2=1B.x2+(y+2)2=1C.(x-1)2+(y-3)2=1D.x2+(y-3)2=4
根据题意可设圆的方程为x2+(y-b)2=1,因为圆过点A(1,2),所以12+(2-b)2=1,解得b=2,所以所求圆的方程为x2+(y-2)2=1.
(2)若圆C经过坐标原点,且圆心在直线y=-2x+3上运动,当半径最小时,圆的方程为__________________.
例2 已知Rt△ABC的斜边为AB,且A(-1,0),B(3,0).求:(1)直角顶点C的轨迹方程;
方法一 设C(x,y),因为A,B,C三点不共线,所以y≠0.因为AC⊥BC,且BC,AC斜率均存在,所以kAC·kBC=-1,
化简得x2+y2-2x-3=0.因此,直角顶点C的轨迹方程为x2+y2-2x-3=0(y≠0).
所以直角顶点C的轨迹方程为(x-1)2+y2=4(y≠0).
设M(x,y),C(x0,y0),因为B(3,0),且M是线段BC的中点,
所以x0=2x-3,y0=2y.由(1)知,点C的轨迹方程为(x-1)2+y2=4(y≠0),将x0=2x-3,y0=2y代入得(2x-4)2+(2y)2=4,即(x-2)2+y2=1(y≠0).因此动点M的轨迹方程为(x-2)2+y2=1(y≠0).
(2)直角边BC的中点M的轨迹方程.
求与圆有关的轨迹问题的常用方法(1)直接法:直接根据题目提供的条件列出方程.(2)定义法:根据圆、直线等定义列方程.(3)相关点代入法:找到要求点与已知点的关系,代入已知点满足的关系式.
(1)求动点P的轨迹C的方程;
设动点P的坐标为(x,y),
整理得x2+y2=2,所以动点P的轨迹C的方程为x2+y2=2.
(2)已知点B(6,0),点A在轨迹C上运动,求线段AB上靠近点B的三等分点Q的轨迹方程.
设点Q的坐标为(x,y),点A的坐标为(xA,yA),因为Q是线段AB上靠近点B的三等分点,
又点A在轨迹C上运动,由(1)有(3x-12)2+(3y)2=2,
命题点1 利用几何性质求最值例3 (2022·泉州模拟)已知实数x,y满足方程x2+y2-4x+1=0.求:
(2)y-x的最小值;
(3)x2+y2的最大值和最小值.
命题点2 利用函数求最值
由于点P(x,y)是圆上的点,故其坐标满足方程x2+(y-3)2=1,故x2=-(y-3)2+1,
由于点P(x,y)是圆上的点,故其坐标满足方程(x-3)2+y2=4,故y2=-(x-3)2+4,
由圆的方程(x-3)2+y2=4,易知1≤x≤5,
与圆有关的最值问题的求解方法
(2)建立函数关系式求最值:列出关于所求目标式子的函数关系式,然后根据关系式的特征选用配方法、判别式法、基本不等式法等求最值.
(3)求解形如|PM|+|PN|(其中M,N均为动点)且与圆C有关的折线段的最值问题的基本思路:①“动化定”,把与圆上动点的距离转化为与圆心的距离;②“曲化直”,即将折线段之和转化为同一直线上的两线段之和,一般要通过对称性解决.
跟踪训练3 (1)设P(x,y)是圆(x-2)2+y2=1上的任意一点,则(x-5)2+(y+4)2的最大值是A.6 B.25 C.26 D.36
(x-5)2+(y+4)2表示点P(x,y)到(5,-4)的距离的平方,∵P(x,y)是圆(x-2)2+y2=1上的任意一点,∴(x-5)2+(y+4)2的最大值为圆心(2,0)到(5,-4)的距离与半径之和的平方,
圆x2+y2-2x-2y+1=0可化为(x-1)2+(y-1)2=1,圆心为(1,1),半径为1,
设过点(-1,0)的圆的切线斜率为k,则圆的切线方程为y-0=k(x+1),即kx-y+k=0,由圆心到切线的距离等于半径,
1.(2023·六安模拟)圆心为(1,-2),半径为3的圆的方程是A.(x+1)2+(y-2)2=9 B.(x-1)2+(y+2)2=3C.(x+1)2+(y-2)2=3 D.(x-1)2+(y+2)2=9
因为圆心为(1,-2),半径为3,所以圆的方程为(x-1)2+(y+2)2=9.
2.(2023·宁德模拟)已知点M(3,1)在圆C:x2+y2-2x+4y+2k+4=0外,则k的取值范围为
∵圆C:x2+y2-2x+4y+2k+4=0,∴圆C的标准方程为(x-1)2+(y+2)2=1-2k,
3.若△AOB的三个顶点坐标分别为A(2,0),B(0,-4),O(0,0),则△AOB外接圆的圆心坐标为A.(1,-1) B.(-1,-2)C.(1,-2) D.(-2,1)
由题意得△AOB是直角三角形,且∠AOB=90°.所以△AOB的外接圆的圆心就是线段AB的中点,设圆心坐标为(x,y),
故所求圆心坐标为(1,-2).
4.圆C:x2+y2-2x-3=0关于直线l:y=x对称的圆的方程为A.x2+y2-2y-3=0 B.x2+y2-2y-15=0C.x2+y2+2y-3=0 D.x2+y2+2y-15=0
由题意,得圆C:(x-1)2+y2=4的圆心为(1,0),半径为2,故其关于直线l:y=x对称的圆的圆心为(0,1),半径为2,故对称圆的方程为x2+(y-1)2=4,即x2+y2-2y-3=0.
5.点M,N是圆x2+y2+kx+2y-4=0上的不同两点,且点M,N关于直线l:x-y+1=0对称,则该圆的半径等于
因为点M,N在圆x2+y2+kx+2y-4=0上,且点M,N关于直线l:x-y+1=0对称,所以直线l:x-y+1=0经过圆心,
6.自圆C:(x-3)2+(y+4)2=4外一点P引该圆的一条切线,切点为Q,PQ的长度等于点P到原点O的距离,则点P的轨迹方程为A.8x-6y-21=0 B.8x+6y-21=0C.6x+8y-21=0 D.6x-8y-21=0
由题意得,圆心C的坐标为(3,-4),半径r=2,如图所示.
即6x0-8y0-21=0,结合选项知D符合题意.
7.已知a∈R,方程a2x2+(a+2)y2+4x+8y+5a=0表示圆,则圆心坐标为___________,半径为___.
由圆的一般方程的形式知,a+2=a2,解得a=2或a=-1.
∴a=2不符合题意;当a=-1时,方程可化为x2+y2+4x+8y-5=0,即(x+2)2+(y+4)2=25,∴圆心坐标为(-2,-4),半径为5.
8.已知等腰△ABC,其中顶点A的坐标为(0,0),底边的一个端点B的坐标为(1,1),则另一个端点C的轨迹方程为_________________________________.
x2+y2=2(除去点(1,1)和点(-1,-1))
设C(x,y),根据在等腰△ABC中|AB|=|AC|,可得(x-0)2+(y-0)2=(1-0)2+(1-0)2,即x2+y2=2.考虑到A,B,C三点要构成三角形,因此点C不能为(1,1)和(-1,-1).所以点C的轨迹方程为x2+y2=2(除去点(1,1)和点(-1,-1)).
9.已知圆心为C的圆经过点A(1,1)和点B(2,-2),且圆心C在直线l:x-y+1=0上.线段PQ的端点P的坐标是(5,0),端点Q在圆C上运动,求线段PQ的中点M的轨迹方程.
所以直线m的方程为x-3y-3=0.
所以圆C的方程为(x+3)2+(y+2)2=25.
设点M(x,y),Q(x0,y0).因为点P的坐标为(5,0),
又点Q(x0,y0)在圆C:(x+3)2+(y+2)2=25上运动,所以(x0+3)2+(y0+2)2=25,即(2x-5+3)2+(2y+2)2=25.
10.已知圆C1经过点A(1,3)和B(2,4),圆心在直线2x-y-1=0上.(1)求圆C1的方程;
∴AB的垂直平分线为y=5-x,
即圆C1的圆心坐标为(2,3),半径r=1,其方程为(x-2)2+(y-3)2=1.
(2)若M,N分别是圆C1和圆C2:(x+3)2+(y+4)2=9上的点,点P是直线x+y=0上的点,求|PM|+|PN|的最小值,以及此时点P的坐标.
注意到点C1(2,3)和点C2(-3,-4)在直线x+y=0的两侧,直线x+y=0与两圆分别相离,如图所示.
当且仅当M,N,P在线段C1C2上时取等号,此时点P为直线C1C2与x+y=0的交点,过C1,C2的直线方程为7x-5y+1=0,
A.1 B.2 C.3 D.4
圆x2+y2-4x+4y=0,即(x-2)2+(y+2)2=8,圆心为(2,-2),依题意,点(2,-2)在直线ax-by-6=0上,则有2a-(-2)b-6=0,整理得a+b=3,而a>0,b>0,
12.(多选)已知圆x2+y2-2x-4y+a-5=0上有且仅有两个点到直线3x-4y-15=0的距离为1,则实数a的可能取值为A.-12 B.-8 C.6 D.-1
由题意可得圆的标准方程是(x-1)2+(y-2)2=10-a,
则圆心到与直线3x-4y-15=0平行且距离为1的直线的距离分别为3和5,
13.(多选)已知圆M与直线x+y+2=0相切于点A(0,-2),圆M被x轴所截得的弦长为2,则下列结论正确的是A.圆M的圆心在定直线x-y-2=0上B.圆M的面积的最大值为50πC.圆M的半径的最小值为1D.满足条件的所有圆M的半径之积为8
∵圆M与直线x+y+2=0相切于A(0,-2),∴直线AM与直线x+y+2=0垂直,∴直线AM的斜率为1,则点M在直线y=x-2,即x-y-2=0上,故A正确;
∵圆M被x轴截得的弦长为2,
当a=-5时,圆M的面积最大,为πr2=50π,故B正确;
2025高考数学一轮复习-8.3-圆的方程【课件】: 这是一份2025高考数学一轮复习-8.3-圆的方程【课件】,共35页。PPT课件主要包含了课前双基巩固,课堂考点突破等内容,欢迎下载使用。
新高考数学一轮复习讲练测课件第8章§8.3圆的方程 (含解析): 这是一份新高考数学一轮复习讲练测课件第8章§8.3圆的方程 (含解析),共60页。PPT课件主要包含了落实主干知识,探究核心题型,课时精练,=6y-12,-2-4等内容,欢迎下载使用。
新高考数学一轮复习课件 第8章 §8.3 圆的方程: 这是一份新高考数学一轮复习课件 第8章 §8.3 圆的方程,共60页。PPT课件主要包含了§83圆的方程,落实主干知识,探究核心题型,课时精练等内容,欢迎下载使用。