第08讲 利用洛必达法则解决导数问题(2类核心考点精讲精练)-备战2025年高考数学一轮复习考点帮(新高考通用)
展开(2类核心考点精讲精练)
命题规律及备考策略
【命题规律】本节内容是新高考卷的选考内容,设题稳定,难度较大,分值为15-17分
【备考策略】1能用导数解决函数问题
2能用洛必达法则解决极限等问题
【命题预测】洛必达法则只是一个求极限的工具,是在一定条件下通过对分子分母分别求导再求极限来确定未定式极限值的方法。详细的洛必达法则应用是大学高等数学中才介绍,这里用高中生最能看懂的方式说明,能备考使用即可.
知识讲解
洛必达法则:
法则1 若函数f(x) 和g(x)满足下列条件:
(1) 及;
(2)在点a的去心邻域内,f(x) 与g(x) 可导且g'(x)≠0;
(3),那么 =。 型
法则2 若函数f(x) 和g(x)满足下列条件:
(1) 及; (2)在点a的去心邻域内,f(x) 与g(x) 可导且g'(x)≠0;
(3),那么 =。 型
注意:
1. 将上面公式中的 换成 洛必达法则也成立。
2. 洛必达法则可处理 型。
3. 在着手求极限前, 首先要检查是否满足 , 型定式, 否则滥用洛必达法则会出错。当不满足三个前提条件时, 就不能用洛必达法则, 这时称洛必达法则不适用, 应从另外途径求极限。
4. 若条件符合, 洛必达法则可连续多次使用, 直到求出极限为止。
, 如满足条件, 可继续使用洛 必达法则。
考点一、洛必达法则的直接应用
1.(23-24高二下·北京朝阳·期中)两个无穷小之比或两个无穷大之比的极限可能存在,也可能不存在,为此,洛必达在1696年提出洛必达法则,即在一定条件下通过对分子、分母分别求导再求极限来确定未定式值的方法,如,则( )
A.B.C.1D.2
2.(2024·浙江·二模)①在微积分中,求极限有一种重要的数学工具——洛必达法则,法则中有结论:若函数,的导函数分别为,,且,则
.
②设,k是大于1的正整数,若函数满足:对任意,均有成立,且,则称函数为区间上的k阶无穷递降函数.
结合以上两个信息,回答下列问题:
(1)试判断是否为区间上的2阶无穷递降函数;
(2)计算:; (3)证明:,.
1.(21-22高二下·重庆万州·阶段练习)我们把分子、分母同时趋近于0的分式结构称为型,比如:当时,的极限即为型.两个无穷小之比的极限可能存在,也可能不存在,为此,洛必达在1696年提出洛必达法则:在一定条件下通过对分子、分母分别求导再求极限来确定未定式值的方法.如:,则 .
2.(21-22高三上·湖北襄阳·期末)我们把分子,分母同时趋近于0的分式结构称为型,比如:当时,的极限即为型,两个无穷小之比的极限可能存在,也可能不存在.早在1696年,洛必达在他的著作《无限小分析》一书中创造一种算法(洛必达法则),用以寻找满足一定条件的两函数之商的极限,法则的大意为:在一定条件下通过对分子、分母分别求导再求极限来确定未定式值的方法.
如:,则 .
3.(2024·河北邢台·二模)在函数极限的运算过程中,洛必达法则是解决未定式型或型极限的一种重要方法,其含义为:若函数和满足下列条件:
①且(或,);
②在点的附近区域内两者都可导,且;
③(可为实数,也可为),则.
(1)用洛必达法则求;
(2)函数(,),判断并说明的零点个数;
(3)已知,,,求的解析式.
参考公式:,.
考点二、利用洛必达法则解决函数综合问题
1.(全国高考)已知 恒成立, 求 的取值范围
2.(天津高考) 恒成立, 求的取值范围
3.(全国高考) 恒成立, 求 的取值范围
1.若不等式对于恒成立,求的取值范围.
2.已知函数.
(1)若在时有极值,求函数的解析式;
(2)当时,,求的取值范围.
3.已知函数.
(1)若函数在点处的切线经过点,求实数的值;
(2)若关于的方程有唯一的实数解,求实数的取值范围.
4.已知.
(1)求的单调区间;
(2)若对任意,不等式恒成立,求的取值范围.
1.(2023高三·全国·专题练习)已知函数,,若对于任意恒成立,求的取值集合.
2.(2023高三·全国·专题练习)已知函数,若当时,恒有成立,求实数的取值范围.
3.(22-23高三·宁夏吴忠·阶段练习)已知函数.
(1)当时,求函数在点处的切线方程;
(2)若且恒成立,求a的取值范围.
4.(23-24高二下·贵州六盘水·期中)已知函数
(1)当时,求函数的最小值;
(2),,求的取值范围.
5.(21-22高三上·江苏连云港·阶段练习)已知,R.
(1)讨论函数的单调性;
(2)若对任意的,恒成立,求整数a的最小值.
6.(2021·陕西汉中·模拟预测)已知函数.
(1)若,求函数的单调区间;
(2)当时,不等式恒成立,求的取值范围.
7.(22-23高三上·北京·阶段练习)已知函数.
(1)求曲线在点处的切线方程;
(2)求证:当时,;
(3)若对恒成立,求实数k的最大值.
8.(22-23高二下·北京·阶段练习)已知函数.
(1)求在点处的切线方程;
(2)求证:当时,.
(3)若时,恒成立,求实数的取值范围.
9.(22-23高三上·江西抚州·期中)已知函数,其中为自然对数的底数.
(1)讨论函数的单调性,
(2)若,当时,恒成立时,求的最大值.(参考数据:)
10.(2023高三·全国·专题练习)设函数,曲线恒与x轴相切于坐标原点.
(1)求常数b的值;
(2)当时,恒成立,求实数a的取值范围;
(3)求证:恒成立.
1.(全国高考) 恒成立, 求 的取值范围
2.(全国高考) 恒成立, 求 的取值范围.
3.(全国高考) 恒成立, 求 的取值范围
第11讲 利用导数研究双变量问题(1类核心考点精讲精练)-备战2025年高考数学一轮复习考点帮(新高考通用): 这是一份第11讲 利用导数研究双变量问题(1类核心考点精讲精练)-备战2025年高考数学一轮复习考点帮(新高考通用),文件包含第11讲利用导数研究双变量问题教师版docx、第11讲利用导数研究双变量问题学生版docx等2份试卷配套教学资源,其中试卷共46页, 欢迎下载使用。
第03讲 复数(9类核心考点精讲精练)-备战2025年高考数学一轮复习考点帮(新高考通用): 这是一份第03讲 复数(9类核心考点精讲精练)-备战2025年高考数学一轮复习考点帮(新高考通用),文件包含第03讲复数原卷版docx、第03讲复数解析版docx等2份试卷配套教学资源,其中试卷共44页, 欢迎下载使用。
利用洛必达法则解决导数问题-高考数学专题: 这是一份利用洛必达法则解决导数问题-高考数学专题,文件包含利用洛必达法则解决导数问题教师版pdf、利用洛必达法则解决导数问题学生版pdf等2份试卷配套教学资源,其中试卷共34页, 欢迎下载使用。