终身会员
搜索
    上传资料 赚现金

    人教版九年级数学上册同步讲义专题第11课 二次函数y=ax2+bx+c(a≠0)的图象与性质(教师版)

    立即下载
    加入资料篮
    人教版九年级数学上册同步讲义专题第11课 二次函数y=ax2+bx+c(a≠0)的图象与性质(教师版)第1页
    人教版九年级数学上册同步讲义专题第11课 二次函数y=ax2+bx+c(a≠0)的图象与性质(教师版)第2页
    人教版九年级数学上册同步讲义专题第11课 二次函数y=ax2+bx+c(a≠0)的图象与性质(教师版)第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    人教版九年级数学上册同步讲义专题第11课 二次函数y=ax2+bx+c(a≠0)的图象与性质(教师版)

    展开

    这是一份人教版九年级数学上册同步讲义专题第11课 二次函数y=ax2+bx+c(a≠0)的图象与性质(教师版),共21页。




    知识点01 一元二次方程相关概念
    知识点02 一元二次方程的相关应用
    【1】握手(送礼)问题
    解题技巧:有2种类型
    ①握手问题,设有x个人,两人之间握一次手,则一共的握次数为;
    ①送礼问题,设有x个人,任意两人之间互相送一个礼物,则一共的送礼次数为;
    【2】传染问题
    解题技巧:有2种类型
    (1)个体传播一轮后,依旧传染。设a为传播前基础人数,b为传播后的人数,n为传播的轮次,p为传播过程中,平均一人传染的人数。
    发现规律:传播人数:b=a(1+p)n,与增长率问题公式一致。
    【3】平均增长率问题
    解题技巧:设a为增长(下降)基础数量,b为增长(下降)后的数量,n为增长(下降)的次数,p为增长(下降)率。
    发现规律: = 1 \* GB3 ①增长时:b=a(1+p)n;
    = 2 \* GB3 ②减少时:b=a(1-p)n
    注: = 1 \* GB3 ①本章考察一元二次方程,通常增长(下降)次数n为2;
    = 2 \* GB3 ②通常设增长(下降)率为x;
    = 3 \* GB3 ③例求解得x=0.1,则表示增长(下降)10%。
    【4】图形问题

    考法01 一元二次方程相关概念与解法
    1.用配方法解下列方程,其中应在方程左右两边同时加上4的是( )
    A.x2﹣2x=5B.2x2﹣4x=5C.x2+4x=3D.x2+2x=5
    【答案】C
    【解析】
    解:A、因为本方程的一次项系数是-2,所以等式两边同时加上一次项系数一半的平方1;故本选项不符合题意;
    B、将该方程的二次项系数化为1,得x2-2x=,此方程的一次项系数是-2,所以等式两边同时加上一次项系数一半的平方1;故本选项不符合题意;
    C、因为本方程的一次项系数是4,所以等式两边同时加上一次项系数一半的平方4;故本选项符合题意;
    D、因为本方程的一次项系数是2,所以等式两边同时加上一次项系数一半的平方1;故本选项不符合题意;
    故选:C.
    2.若是方程的一个根,则a的值为( )
    A.-1B.0C.11D.2
    【答案】B
    【解析】
    解:将代入方程中,可得

    故选:B.
    3.已知方程有一个根是(),则下列代数式的值恒为1的是( )
    A.B.C.D.
    【答案】D
    【解析】
    解:设该方程的另外一个解为,


    将代入可得:,

    故选:.
    4.已知x为实数,且满足(x2+3x)2+2(x2+3x)﹣3=0,则x2+3x的值为( )
    A.-3或1B.-3C.1D.不能确定
    【答案】C
    【解析】
    设x2﹣3x=y,则原方程可化为y2+2y-3=0

    解得:y1=﹣3,y2=1
    当x2﹣3x=-3,即x2﹣3x+3=0时

    方程无解
    则x2+3x的值为1
    故选C
    5.方程化成一般形式为_____________,二次项系数是_____________,一次项系数是_____________,常数项是_____________.
    【答案】 1
    【解析】
    解:
    方程整理得:即为
    ∴二次项系数为1,一次项系数为-5,常数项为-4,
    故答案为: ①;② 1;③ -5;④-4.
    6.解方程:
    (1)x2﹣4x﹣5=0;
    (2)3x2﹣1=2x+2
    【答案】(1)x1=5,x2=﹣1(2)
    【解析】
    (1)解:x2﹣4x﹣5=0
    (x﹣5)(x+1)=0,
    x﹣5=0或x+1=0,
    所以x1=5,x2=﹣1;
    (2)解:3x2﹣2x﹣3=0,
    a=3,b=﹣2,c=﹣3,
    Δ=(﹣2)2﹣4×3×(﹣3)=40>0,
    ∴,
    ∴.
    7.解方程
    (1)x2﹣4x=0;
    (2)4x2﹣25=0;
    (3)2x(x﹣3)+x=3.
    【答案】(1)x1=0,x2=4;(2)x1=﹣2.5,x2=2.5;(3)x1=3,x2=
    【解析】
    (1)解:x2﹣4x=0
    x(x﹣4)=0;
    x=0或x﹣4=0;
    所以x1=0,x2=4;
    (2)解:4x2﹣25=0
    (2x+5)(2x﹣5)=0,
    2x+5=0或2x﹣5=0,
    所以x1=-2.5,x2=2.5;
    (3)解:2x(x﹣3)+x=3
    将方程整理得2x(x﹣3)+(x﹣3)=0;
    (x﹣3)(2x+1)=0;
    x﹣3=0或2x+1=0;
    所以x1=3,x2.
    8.解下列方程:
    (1); (2); (3);
    (4); (5); (6);
    (7); (8).
    【答案】(1),;(2),;(3),;(4),;(5),;(6),;(7),;(8),
    【解析】
    解:(1)196x2-1 = 0,
    移项,得196x2= 1,
    直接开平方,得14x=,
    x=,
    ∴原方程的解为,.
    (2),
    原方程化为,

    ∴或,
    ∴,.
    (3),
    ∵,,,
    ∴>0,
    ∴,
    ,.
    (4),
    原方程化为,
    ∵,,,
    ∴>0,
    ∴ ,
    ∴,.
    (5),原方程化为,
    因式分解,得,
    ∴或,
    ∴,.
    (6),
    原方程化为,
    ∴或,
    ∴,.
    (7)原方程化为,
    ∵,,,
    ∴>0,
    ∴,
    ∴,.
    (8),
    原方程化为,
    ∴或,
    ∴,.
    9.求下列方程两个根的和与积:
    (1); (2);
    (3); (4).
    【答案】(1),;(2),;(3),;(4),
    【解析】
    解:(1)设方程的两根为,,则, .
    (2)设方程的两根为,,则,.
    (3)原方程化为,设方程的两根为,,则,.
    (4)原方程化为,设方程的两根为,,则,.
    10.解下列方程:
    (1); (2); (3);
    (4); (5); (6).
    【答案】(1)x1=0,x2=-1;(2)x1=0,x2=2;(3)x1=x2=1;(4)x1=,x2=;(5)x1=,x2=;(6)x1=1,x2=3
    【解析】
    解:(1)x(x+1)=0,
    x=0或x+1=0,
    ∴x1=0,x2=−1;
    (2),

    x=0或=0,
    ∴x1=0,x2=2;
    (3),


    ∴x1=x2=1;
    (4)(2x+11)(2x−11)=0,
    2x+11=0或2x−11=0,
    ∴x1=,x2=;
    (5)(2x+1)(3x−2)=0,
    2x+1=0或3x−2=0,
    ∴x1=,x2=;
    (6)(x−4+5−2x)(x−4−5+2x)=0,
    (1−x)(3x−9)=0,
    1−x=0或3x−9=0,
    ∴x1=1,x2=3.
    11.填空:
    (1)+______=(x+________)2;
    (2)+______=(x-________)2;
    (3)+______=(x+________)2;
    (4)+______=(x-________)2.
    【答案】 25 5 36 6
    【解析】
    解:(1);
    (2);
    (3);
    (4);
    故答案为25;5;36;6;;;;.
    12.如果m是方程x2+2x-3=0的实根,那么代数式m3-7m的值是 _____.
    【答案】
    【解析】
    x2+2x-3=0


    m是方程x2+2x-3=0的实根


    故答案为:.
    13.若关于x的一元二次方程kx2-6x+1=0有两个不相等的实数根,则k的取值范围是_____________ .
    【答案】k<9,且
    【解析】
    解:∵关于x的一元二次方程kx2-6x+1=0有两个不相等的实数根,
    ∴, ,
    ∴k<9且.
    故答案为:k<9,且
    考法02 一元二次方程的实际应用
    14.一个等腰三角形的腰和底边长分别是方程的两根,则该等腰三角形的周长是________.
    【答案】14
    【解析】
    解:,
    (x-2)(x-6)=0,
    x1=2,x2=6,
    当腰长为2时,三角形的三边为2,2,6,不符合三角形的三角关系,舍去;
    当腰长为6时,三角形的三边关系为6,6,2,符合三角形的三角关系,
    则周长为:6+6+2=14,
    故答案为:14.
    15.将一些相同的“〇”按如图所示摆放,观察每个图形中的“〇”的个数,若第n个图形中“〇”的个数是78,则n的值是_____.
    【答案】12
    【解析】
    解:第1个图象有1个小圆,
    第2个图象有1+2=3个小圆,
    第3个图象有1+2+3=6个小圆,
    第4个图象有1+2+3+4=10个小圆,
    第n个图象有1+2+3+…+n=个小圆,
    ∵第n个图形中“〇”的个数是78,
    ∴=78,
    解得n=12,或n=﹣13(不符合题意,舍去)
    故答案为12.
    16.有一个两位数,它的十位上的数字比个位上的数字小2,十位上的数字与个位上的数字的积的3倍刚好等于这个两位数,求这个两位数.
    【答案】24
    【解析】
    解:设十位上的数字为x,则个位上的数字为(x+2),
    根据题意得:3x(x+2)=10x+(x+2),
    整理得:3x2-5x-2=0,
    解得:x1=2,x2=(不合题意,舍去),
    ∴x+2=4,
    ∴这个两位数为24.
    17.一个矩形的长和宽相差,面积是.求这个矩形的长和宽.
    【答案】这个矩形的长为4 cm,宽为l cm
    【解析】
    解:设矩形的宽为cm,则长为() cm
    由矩形面积公式可知,
    整理得,
    解得,.
    因为矩形的边长不能是负数,所以不符合题意,舍去,
    所以.
    所以.
    答:这个矩形的长为4 cm,宽为1cm .
    18.向阳村2010年的人均收入为12000元,2012年的人均收入为14520元,求人均收入的年平均增长率.
    【答案】10%.
    【解析】
    解:设这两年的平均增长率为x,
    由题意得:,
    解得:(不合题意舍去),.
    答:这两年的平均增长率为10%.
    19.如图,利用一面墙(墙的长度不限),用长的篱笆,怎样围成一个面积为的矩形场地?
    【答案】用20m长的篱笆围成一个长为10 m,宽为5 m的矩形(其中一边长10m,另两边长5 m)
    【解析】
    解:设与墙垂直的篱笆长为m,则与墙平行的篱笆长为m,
    根据题意,得,
    整理得,,
    解得,

    答:用20m长的篱笆围成一个长为10 m,宽为5 m的矩形(其中一边长10m,另两边长5 m).
    20.要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排15场比赛,应邀请多少个球队参加比赛?
    【答案】6
    【解析】
    设应邀请x支球队参加比赛,根据题意得 解得 (舍去),答:邀请6支球队参加比赛.
    21.一个长方体的长与宽的比为5∶2,高为,表面积为,画出这个长方体的展开图.
    【答案】见解析
    【解析】
    解:设这个长方体的长为cm,则宽为cm,得,
    整理,得,
    解得,.
    因为长方体的棱长不能为负数,所以不符合题意,舍去,所以,
    所以这个长方体的长为(cm),宽为(cm).
    这个长方体的展开图如图所示(单位:cm).
    22.一个直角梯形的下底比上底长,高比上底短,面积是.画出这个梯形.
    【答案】见解析
    【解析】
    解;设梯形的上底长为cm,则下底长为()cm.高为()cm,
    根据题意,得,
    整理,得,
    解得,.
    因为梯形的边长不能为负数,所以不符合题意,舍去,
    所以,,.
    画出这个直角梯形如图所示.
    23.如图,要设计一本书的封面,封面长,宽,正中央是一个与整个封面长宽比例相同的矩形,如果要使四周的彩色边衬所占面积是封面面积的四分之一,上、下边衬等宽,左、右边衬等宽,应如何设计四周边衬的宽度(结果保留小数点后一位)?
    【答案】1.8,1.4
    【解析】
    解:封面的长宽之比是,中央的矩形的长宽之比也应是9∶7,设中央的矩形的长和宽分别是和,由此得上、下边衬与左、右边衬的宽度之比是

    设上、下边衬的宽均为,左、右边衬的宽均为,则中央的矩形的长为,宽为.由题意得:

    整理,得.
    解方程,得.
    ∴上、下边衬的宽均为,左、右边衬的宽均为.
    24.一个直角三角形的两条直角边的和是,面积是.求两条直角边的长.
    【答案】这两条直角边为,.
    【解析】
    解:设其中一条直角边长为xcm,则另一直角边长为(14﹣x)cm,得:
    x(14﹣x)=24,解得x1=6,x2=8.
    当x1=6时,14﹣x=8;
    当x2=8时,14﹣x=6;
    答:两条直角边的长分别为,.
    25.两个相邻偶数的积是168.求这两个偶数.
    【答案】-14,-12或12,14.
    【解析】
    解:设两个相邻偶数中较小的一个是x,则另一个是x+2.根据题意,得:
    x(x+2)=168,
    ∴x2+2x-168=0,
    ∴ x1=-14,x2=12.
    当x=-14时,x+2=-12;
    当x=12时,x+2=14.
    答:这两个偶数分别是-14,-12或12,14.
    26.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,每个支干长出多少小分支?
    【答案】9.
    【解析】
    解:设每个支干长出x小分支,根据题意可得:1+x+x2=91,
    解得:x1=9,x2=﹣10(不合题意舍去),
    答:每个支干长出9小分支.
    27.一个菱形两条对角线长的和是,面积是.求菱形的周长.
    【答案】菱形的周长是cm.
    【解析】
    解:设菱形的一条对角线长为xcm,则另一条对角线长为(10-x)cm,由菱形的性质可知:
    (10-x)=12,整理,得x2-10x+24=0,
    解得x1=4,x2=6.
    当x=4时,10-x=6;当x=6时,10-x=4,
    所以这个菱形的两条对角线长分别为6cm和4cm.
    由菱形的性质和勾股定理得菱形的边长为=(cm),所以菱形的周长为cm.
    答:菱形的周长是cm.
    28.参加足球联赛的每两队之间都进行两场比赛.共要比赛90场.共有多少个队参加比赛?
    【答案】共有10个队参加比赛.
    【解析】
    设共有x个队参加比赛,
    根据题意得:2×x(x﹣1)=90,
    整理得:x2﹣x﹣90=0,
    解得:x=10或x=﹣9(舍去).
    故共有10个队参加比赛.
    29.青山村种的水稻2010年平均每公顷产,2012年平均每公顷产.求水稻每公顷产量的年平均增长率.
    【答案】水稻每公顷产量的年平均增长率为.
    【解析】
    解:设水稻每公顷产量的年平均增长率为x,则有:
    7200(1+x)2=8450.
    解得x=或x=(舍).
    答:水稻每公顷产量的年平均增长率为.
    30.要为一幅长,宽的照片配一个镜框,要求镜框的四条边宽度相等,且镜框所占面积为照片面积的四分之一,镜框边的宽度应是多少厘米(结果保留小数点后一位)?
    【答案】镜框边的宽度约是1.5cm.
    【解析】
    解:设镜框边的宽度应是xcm,根据题意,得:
    (29+2x)(22+2x)-22×29=×29×22,
    整理,得8x2+204x-319=0,
    解得x=,
    所以,,
    因x=<0,不符合题意,舍去,
    所以x =≈1.5;
    答:镜框边的宽度约是1.5cm.
    31.如图,线段的长为1.
    (1)线段上的点C满足关系式,求线段的长度;
    (2)线段上的点D满足关系式,求线段的长度;
    (3)线段上的点E满足关系式,求线段的长度.上面各小题的结果反映了什么规律?
    【答案】(1);(2);(2).规律:若为线段上一点,且满足,则.也叫做黄金比,点为黄金分割点,一条线段上有两个黄金分割点.
    【解析】
    解:(1)设线段AC的长度为,则,
    ∵,
    ∴,


    解得, (舍),
    ∴;
    (2)设线段的长度为,则线段,
    ∵,
    ∴,

    解得,(舍),
    ∴ ;
    (3) 设线段的长度为,则线段,
    ∵,
    ∴,
    解得,(舍),
    ∴;
    规律:若为线段上一点,且满足,则.也叫做黄金比,点为黄金分割点,一条线段上有两个黄金分割点.
    32.某商店经销一种销售成本为每千克40元的水产品,据市场分析,若每千克50元销售,一个月能售出500kg,销售单价每涨1元,月销售量就减少10kg,针对这种水产品情况,请解答以下问题:
    (1)当销售单价定为每千克55元时,计算销售量和月销售利润;
    (2)商品想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应为多少?
    【答案】(1)450 kg;6750元;(2)80元
    【解析】
    (1)55-50=5元
    500-5×10=450 kg
    (55-40)×450=6750元
    答:当销售单价定为每千克55元时,销售量为450 kg,月销售利润为6750元.
    (2)
    设涨价x元,则销售量减少10xkg,则
    (50-40+x)(500-10x)=8000
    解得x1=10,x2=30
    又因为40×(500-10x)≤10000
    解得x≥25
    所以x=30,x+50=80
    答:销售单价应为80元.课程标准
    (1)梳理本章的知识结构网络,回顾与复习本章知识.
    (2)能选择适当的方法,快速、准确地解一元二次方程,知道一元二次方程根的判别式和一元二次方程根与系数的关系,并能利用它们解决有关问题.
    (3)列一元二次方程解决实际问题.
    (4)进一步加深对方程思想、分类思想、转化思想(即降次)的理解与运用.
    a
    一元二次方程的概念
    ①含有1个未知数
    ②最高次为2次
    ③整式方程
    b
    一元二次方程一般形式

    c
    一元二次方程如何验根
    将x的值代入方程
    d
    一元二次方程的解法
    ①直接开方法
    ②配方法
    ③公式法
    ④因式分解法
    e
    若一元二次方程ax2+bx+c=0(a≠0)有实数根x1,x2,求根公式


    f
    根与系数的关系是:


    g
    判别一个一元二次方程是否有实根
    当时,
    方程有两个不等的实数根;
    当时,
    方程有两个相等的实数根;
    当时,
    方程没有实数根.
    h
    列一元二次方程可以解决许多实际问题,解题的一般步
    审、设、列、解、验、答
    传播轮次
    传播前人数
    传染人数
    传播后总人数
    1
    a
    ap
    a+ap=a(1+p)
    2
    a(1+p)
    a(1+p)p
    a(1+p)+a(1+p)p=a(1+p)2
    3
    a(1+p)2
    a(1+p)2p
    a(1+p)2+a(1+p)2x=a(1+p)3
    增长(下降)次数
    增长(下降)前数量
    增长(下降)量
    增长(下降)后数量
    1
    a
    ap
    a±ap=a(1±p)
    2
    a(1±p)
    a(1±p)p
    a(1±p)±a(1±p)p=a(1±p)2
    3
    a(1±p)2
    a(1±p)2p
    a(1+p)2±a(1±p)2x= a(1±p)3
    类型
    图形
    面积表示
    1、内挖类型
    如图所示的矩形ABCD长为a,宽为b,空白部分宽均为x,则阴影的面积可表示为 .
    2、外扩类型
    如图所示的阴影部分矩形的长为a,宽为b,空白部分宽均为x,则矩形ABCD的面积可表示为 .
    3、开路问题
    如图所示矩形的长为a,宽为b,在矩形中挖四条等宽的小路,路宽均为x,则剩余部分(绿色阴影)面积可表示为 .
    4、围栏问题
    ①如图,靠着一面墙MN用篱笆建一个菜园ABCD,篱笆总长为a,设垂直于墙面的边CD长为x,则矩形BC边的长为 ,矩形ABCD的面积为 ;
    ②如图,靠着一面墙MN用篱笆建一个菜园ABCD,中间还有一道篱笆EF,篱笆总长为a,设垂直于墙面的边CD长为x,则矩形BC边的长为 ,矩形ABCD的面积为 ;
    ③如图,靠着一面墙MN用篱笆建一个菜园ABCD,并开一个宽度为b的门,篱笆总长为a,设垂直于墙面的边CD长为x,则矩形BC边的长为 ,矩形ABCD的面积为 ;

    相关试卷

    人教版九年级数学上册同步讲义专题第11课 二次函数y=ax2+bx+c(a≠0)的图象与性质(教师版):

    这是一份人教版九年级数学上册同步讲义专题第11课 二次函数y=ax2+bx+c(a≠0)的图象与性质(教师版),共21页。

    人教版九年级数学上册同步讲义专题第11课 二次函数y=ax2+bx+c(a≠0)的图象与性质(学生版):

    这是一份人教版九年级数学上册同步讲义专题第11课 二次函数y=ax2+bx+c(a≠0)的图象与性质(学生版),共8页。

    人教版九年级上册22.2二次函数与一元二次方程课堂检测:

    这是一份人教版九年级上册22.2二次函数与一元二次方程课堂检测,共13页。试卷主要包含了二次函数与之间的相互关系,二次函数的图象的画法,二次函数的图象与性质,求二次函数的最大值的方法等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        人教版九年级数学上册同步讲义专题第11课 二次函数y=ax2+bx+c(a≠0)的图象与性质(教师版)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map