所属成套资源:人教版九年级数学上册同步讲义专题(教师版)+(学生版)
人教版九年级数学上册同步讲义专题第16课 图形的旋转(学生版)
展开
这是一份人教版九年级数学上册同步讲义专题第16课 图形的旋转(学生版),共12页。
知识点01 旋转的概念
把一个图形绕着某一点O转动一个角度的图形变换叫做旋转.点O叫做 ,转动的角叫做 (如∠AO A′),如果图形上的点A经过旋转变为点A′,那么,这两个点叫做这个旋转的 .
【注意】
旋转的三个要素: 、 和 .
知识点02 旋转的性质
(1)对应点到 的距离相等(OA= OA′);
(2)对应点与旋转中心所连线段的夹角等于 ;
(3)旋转前、后的图形全等(△ABC≌△).
【注意】
图形绕某一点旋转,既可以按顺时针旋转也可以按逆时针旋转.
知识点03 旋转的作图
在画旋转图形时,首先确定旋转中心,其次确定图形的关键点,再将这些关键点沿指定的方向旋转指定的角度,然后连接对应的部分,形成相应的图形.
【注意】
作图的步骤:
(1)连接图形中的每一个关键点与旋转中心;
(2)把连线按要求(顺时针或逆时针)绕旋转中心旋转一定的角度(旋转角);
(3)在角的一边上截取关键点到旋转中心的距离,得到各点的对应点;
(4)连接所得到的各对应点.
考法01 旋转的概念与性质
【典例1】如图是一个装饰连续旋转闪烁所成的四个图形,照此规律闪烁,第2021次闪烁呈现出来的图形是( )
A.B.C.D.
【即学即练】依次观察三个图形:,并判断照此规律从左向右第四个图形是( )
A.B.C.D.
【典例2】在图形的旋转中,下列说法不正确的是( )
A.旋转前和旋转后的图形一样B.图形上的每一个点到旋转中心的距离都相等
C.图形上的每一个点旋转的角度都相同D.图形上可能存在不动的点
【即学即练】下列说法错误的是( )
A.平移和旋转都不改变图形的形状和大小
B.平移和旋转能改变图形的位置
C.平移和旋转都不改变图形的位置
D.平移和旋转能改变图形的位置,而不改变图形的形状、大小
考法02 旋转的作图
【典例3】将下图所示的图案按顺时针方向旋转90°后可以得到的图案是( )
A.B. C. D.
【即学即练】如图,方格纸中,将Rt△AOB绕点B按顺时针旋转90°后可以得到Rt△A′O'B 的是( )
A.B.C.D.
【典例4】如图,在平面直角坐标系中,的顶点都在方格线的格点上,将绕点A逆时针方向旋转,得到,则点C的对应点的坐标为( )
A.B.C.D.
【即学即练】如图,在平面直角坐标系中,已知,,,将先向右平移3个单位长度得到,再绕顺时针方向旋转90°得到,则的坐标是( )
A.B.C.D.
题组A 基础过关练
1.如图,点P(1,4)绕着原点顺时针方向旋转90度后得到像点Q,则点Q的坐标是( )
A.(1,-4)B.(-1,4)C.(4,-1)D.(-4,1)
2.如图,将△ABC绕点B顺时针旋转一定的角度得到,此时点C在边上,若AB=5,=2,则的长是( )
A.2B.3C.4D.5
3.下列图形中,只经过旋转即可得到的是( )
A.B.C.D.
4.如图,该图形围绕其中心点O按下列角度旋转后,能与其自身重合的是( )
A.B.C.D.
5.把如图中的三角形A( )可以得到三角形B.
A.先向右平移5格,再向上平移2格.
B.先向右平移7格,再以直角顶点为中心逆时针旋转,然后向上平移1格.
C.先以直角顶点为中心顺时针旋转,再向右平移5格.
D.先向右平移5格,再以直角顶点为中心逆时针旋转.
6.以图(1)(以O为圆心,半径为1的半圆)作为“基本图形”,分别经历如下变换,不能得到图(2)的是( )
A.绕着OB的中点旋转180°即可B.先绕着点O旋转180°,再向右平移1个单位
C.先以直线AB为对称轴进行翻折,再向右平移1个单位D.只要向右平移1个单位
7.将数字“6”旋转,得到数字“9”,将数字“9”旋转,得到数字“6”,现将数字“689”整体旋转,得到的数字是______.
8.关于如图的形成过程:(1)由一个三角形平移形成的;(2)由一个三角形绕中心依次旋转形成的;(3)由一个三角形作轴对称形成的;(4)由一个三角形先平移再旋转形成的,说法正确的有_______;(填序号)
9.如图,在每个小正方形的边长为1个单位的网格中,△ABC的顶点均在格点(网格线的交点)上.
(1)将△ABC向右平移5个单位得到,画出;
(2)将(1)中的绕点逆时针旋转得到,画出;
(3)连接,则=_________.
【答案】(1)见解析
(2)见解析
(3)
10.在如图所示的直角坐标系中,解答下列问题:
(1)分别写出A、B两点的坐标;
(2)将△ABC绕点A顺时针旋转90°,画出旋转后的△AB1C1
题组B 能力提升练
1.在平面直角坐标系中,点A的坐标是(-2,1),连接OA,将线段OA绕原点О旋转180°,得到对应线段OB,则点B的坐标是( )
A.(2,-1)B.(2,1)C.(1,-2)D.(-2,-1)
2.如图,将△ABC旋转得到△ADE,DE经过点C,若AD⊥BC,,则∠ACB的度数为( )
A.B.C.D.
3.如图,在Rt△ABC中,∠C=90°,∠ABC=30°,AC=1cm,将Rt△ABC绕点A逆时针旋转得到Rt△A′B′C′.使点C′落在AB边上,连接BB′,则BB′的长度是( )
A.1cmB.2cmC.3cmD.23cm
4.如图,在中,,,,将绕点B顺时针旋转得到,连接DC交AB于点F,则与的周长之和为( )
A.16B.24C.32D.40
5.如图,在平面直角坐标系中,是菱形对角线的中点,轴且,,将菱形绕点旋转,使点落在轴上,旋转后点的对应点的坐标是( )
A.B.或C.D.或
6.如图,将△ABE绕正方形ABCD的顶点A逆时针旋转90°,得到△ADF,连接EF,则下列结论错误的是( )
A.△EAB≌△FAD
B.AE⊥AF
C.∠AEF=45°
D.四边形AECF的周长等于四边形ABCD的周长
7.平面直角坐标系中,点A的坐标为(2,3),把OA绕点O逆时针旋转90°,那么A点旋转后所到点的横坐标是______.
8.如图,在△ABC中,∠ACB=90°,∠B=30° .现将△ABC绕直角顶点C逆时针旋转,当点A的对应点落在AB边上时即停止.若BC=3,则=________.
9.如图,在正方形网格中,和的顶点均在格点上,并且是由旋转得到的.根据所给信息,填空:
(1)旋转中心为点____________、旋转角的度数为____________、旋转方向为____________;
(2)连结,则四边形的形状是____________.
10.如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,△ABC的三个顶点的坐标分别为,,.
(1)将△ABC向上平移1个单位长度,再向右平移5个单位长度后得到,画出,并直接写出点的坐标;
(2)画出△ABC绕原点O逆时针旋转90°得到的;
(3)在y轴上找一点M,使最小,请直接写出M的坐标.
题组C 培优拔尖练
1.如图,将△ABC绕点B逆时针旋转80°得△DBE,点D,E分别为点A,C的对应顶点,连接AD,若ADBC,则∠DBE为( )
A.80°B.50°C.55°D.100°
2.如图,在平面直角坐标系中,将边长为a的正方形OABC绕点O顺时针旋转后得到正方形,依此方式连续旋转2023次得到正方形,那么点的坐标是( )
A.(a,a)B.C.D.
3.如图,在ABC中,AB=6,将ABC绕点B按逆时针方向旋转后得到,则图中阴影部分的面积为( )
A.B.C.D.
4.如图,P是等边三角形内的一点,且,将绕点B顺时针旋转得到,连接,则以下结论中不正确是( )
A.B.C.D.
5.如图,在平面直角坐标系中,的顶点坐标分别为,点绕点A旋转得到点,点绕点B旋转得到点,点绕点C旋转得到点,点绕点A旋转得到点……按此作法进行下去,则点的坐标为( )
A.B.C.D.
6.如图,O是等边△ABC内一点,OA=3,OB=4,OC=5,将线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,下列结论:①△BO′A可以由△BOC绕点B逆时针旋转60°得到;②线段OO′=4;③∠AOB=150°;④=6+4,其中正确的结论个数有( )个
A.1B.2C.3D.4
7.如图,在△ABC中,已知AB=AC,∠BAC=40°,将△ABC绕点C顺时针旋转到,使点落在AC上,那么∠A的度数是 _____°.
8.如图,在△ABC中,AC=2+2,∠BAC=45°,∠ACB=30°,将△ABC绕点B按逆时针方向旋转,得到 ,点E为线段AB中点,点P是线段AC上的动点,将△ABC绕点B按逆时针方向旋转的过程中,点P的对应点是点,则线段的最大值是________,最小值是________.
9.在8×5的网格中建立如图的平面直角坐标系,四边形OABC的顶点坐标分别为O(0,0),A(3,4),B(8,4),C(5,0). 仅用无刻度的直尺在给定网格中按下列步骤完成画图,并回答问题:
(1)将线段CB绕点C逆时针旋转90°,画出对应线段CD;
(2)在线段AB上画点E,使∠BCE=45°,(保留画图过程的痕迹);
(3)连接AC,画点E关于直线AC的对称点F,并简要说明画法.
10.把直角三角形OAB与直角三角形O'CD如图1放置,直角顶点O与O′重合在一起,点D在OB上,∠B=30°,∠C=45°.现将△O'CD固定,△OAB绕点O顺时针旋转,旋转角α(0°≤α<90°),OB与DC交于点E.
(1)如图2,在旋转过程中,若OACD时,则α= ;若ABOC时,则α= ;
(2)如图2,在旋转过程中,当△ODE有两个角相等时,α= ;
(3)如图3,连结AC,在旋转过程中,猜想∠DOB与∠CAB+∠ACD的大小关系,并说明理由.
课程标准
(1)掌握旋转的概念,探索它的基本性质,理解对应点到旋转中心的距离相等、对应点与旋转中心连线所成的角彼此相等的性质。
(2)能够按要求作出简单平面图形旋转后的图形,并能利用旋转进行简单的图案设计。
相关试卷
这是一份人教版九年级数学上册同步讲义专题第28课 概率的计算(学生版),共10页。
这是一份人教版九年级数学上册同步讲义专题第20课 垂径定理(学生版),共11页。试卷主要包含了垂径定理,推论,下列语句中不正确的有等内容,欢迎下载使用。
这是一份人教版九年级数学上册同步讲义专题第16课 图形的旋转(教师版),共28页。