初中数学中考复习专题满分秘籍讲义练习 对角互补模型
展开类型一:含90°的对角互补模型
(1)如图,∠AOB=∠DCE=90°,OC平分∠AOB,则有以下结论:
;
;
作法1 作法2
(2)如图,∠AOB=∠DCE=90°,OC平分∠AOB,当∠DCE的一边与AO的延长线交于点D时,则有以下结论:
;
;
作法1 作法2
类型二:含120°的对角互补模型
(1)如图,∠AOB=2∠DCE=120°,OC平分∠AOB,则有以下结论:
;
;
作法1 作法2
(2)如图,∠AOB=∠DCE=90°,OC平分∠AOB,当∠DCE的一边与AO的延长线交于点D时,则有以下结论:
;
;
作法1 作法2
典题探究 启迪思维 探究重点
例题1. 如图,正方形ABCD与正方形OMNP的边长均为10,点O是正方形ABCD的中心,正方形OMNP绕O点旋转,证明:无论正方形OMNP旋转到何种位置,这两个正方形重叠部分的面积总是一个定值,并求这个定值.
【解答】解:当OP∥AD或OP经过C点,
重叠部分的面积显然为正方形的面积的,即25,
当OP在如图位置时,过O分别作CD,BC的垂线垂足分别为E、F,
如图在Rt△OEG与Rt△OFH中,∠EOG=∠HOF,OE=OF=5,
∴△OEG≌△OFH,
∴S四边形OHCG=S四边形OECF=25,即两个正方形重叠部分的面积为25.
变式练习>>>
1. 角线交于点O,点E、F分别在AB、BC上(AE<BE),且∠EOF=90°,OE、DA的延长线交于点M,
OF、AB的延长线交于点N,连接MN.
(1)求证:OM=ON.
(2)若正方形ABCD的边长为4,E为OM的中点,求MN的长.
【解答】解:(1)∵四边形ABCD是正方形,
∴OA=OB,∠DAO=45°,∠OBA=45°,
∴∠OAM=∠OBN=135°,
∵∠EOF=90°,∠AOB=90°,
∴∠AOM=∠BON,
∴△OAM≌△OBN(ASA),
∴OM=ON;
例题2. 四边形ABCD被对角线BD分为等腰直角△ABD和直角△CBD,其中∠A和∠C都是直角,另一条
对角线AC的长度为2,求四边形ABCD的面积.
【解答】解:将△ABC绕点A旋转90°,使B与D重合,C到C′点,
则有∠CDC′=∠ADC+∠ADC′=∠ADC+∠ABC=180°,
所以C、D、C′在同一直线上,则ACDC′是三角形,
又因为AC=AC′,
所以△ACC′是等腰直角三角形,
在△ABC和△ADC′中
∴△ABC≌△ADC′(SAS),
∴四边形ABCD的面积等于等腰直角三角形ACC′的面积,
所以S四边形ABCD=S△ACC′=×2×2=2.
变式练习>>>
2. 如图,在四边形ABCD中,∠A=∠C=90°,AB=AD,若这个四边形的面积为12,则BC+CD=_______.
答案:
例题3. 如图,在Rt△ABC中,∠ABC=90°,AB=3,BC=4,Rt△MPN,∠MPN=90°,点P在AC上,PM交AB于点E,PN交BC于点F,当PE=2PF时,AP= 3 .
【解答】解:如图作PQ⊥AB于Q,PR⊥BC于R.
∵∠PQB=∠QBR=∠BRP=90°,
∴四边形PQBR是矩形,
∴∠QPR=90°=∠MPN,
∴∠QPE=∠RPF,
∴△QPE∽△RPF,
∴==2,
∴PQ=2PR=2BQ,
∵PQ∥BC,
∴AQ:QP:AP=AB:BC:AC=3:4:5,设PQ=4x,则AQ=3x,AP=5x,BQ=2x,
∴2x+3x=3,
∴x=,
∴AP=5x=3.
故答案为3.
变式练习>>>
3. 如图,在矩形ABCD中,AB=3,BC=5,点E在对角线AC上,连接BE,作EF⊥BE,垂足为E,直线EF交线段DC于点F,则=( )
A.B.C.D.
【解答】解:如图,连接BF,取BF的中点O,连接OE,OC.
∵四边形ABCD是矩形,EF⊥BE,
∴∠BEF=∠BCF=90°,AB=CD=3,BC=AD=5,
∵OB=OF,
∴OE=OB=OF=OC,
∴B,C,F,E四点共圆,
∴∠EBF=∠ECF,
∴tan∠EBF=tan∠ACD,
∴==,
故选:B.【本题两种方法解答,过E作两垂线亦可】
例题4. 用两个全等且边长为4的等边三角形△ABC和△ACD拼成菱形ABCD.把一个60°角的三角尺与
这个菱形叠合,使三角尺的60°角的顶点与点A重合,两边分别与AB,AC重合,将三角尺绕点A按逆时
针方向旋转.
(1)当三角尺的两边分别与菱形的两边BC,CD相交于点E,F时,(如图1),通过观察或测量BE,CF的长度,你能得出什么结论?(直接写出结论,不用证明);
(2)当三角尺的两边分别与菱形的两边BC,CD的延长线相交于点E,F时(如图2),你在(1)中得到的结论还成立吗?说明理由;
(3)在上述情况中,△AEC的面积是否会等于?如果能,求BE的长;如果不能,请说明理由.
【解答】解:(1)BE=CF.
证明:在△ABE和△ACF中,
∵∠BAE+∠EAC=∠CAF+∠EAC=60°,
∴∠BAE=∠CAF.
∵AB=AC,∠B=∠ACF=60°,
∴△ABE≌△ACF(ASA).
∴BE=CF;
(3)能.
△AEC的CE边上的高为等边△ABC的高,为2,
∵△AEC的面积等于,
∴底边CE=2,
∴BE=6或2.
变式练习>>>
4. 我们规定:横、纵坐标相等的点叫做“完美点”.
(1)若点A(x,y)是“完美点”,且满足x+y=4,求点A的坐标;
(2)如图1,在平面直角坐标系中,四边形OABC是正方形,点A坐标为(0,4),连接OB,E点从O向B运动,速度为2个单位/秒,到B点时运动停止,设运动时间为t.
①不管t为何值,E点总是“完美点”;
②如图2,连接AE,过E点作PQ⊥x轴分别交AB、OC于P、Q两点,过点E作EF⊥AE交x轴于点F,问:当E点运动时,四边形AFQP的面积是否发生变化?若不改变,求出面积的值;若改变,请说明理由.
【解答】解(1)∵点A(x,y)是“完美点”
∴x=y
∵x+y=4
∴x=2,y=2
∴A点坐标(2,2)
(2)①∵四边形OABC是正方形,
点A坐标为(0,4),
∴AO=AB=BC=4
∴B(4,4)
设直线OB解析式y=kx过B点
∴4=4k
k=1
∴直线OB解析式y=x
设点E坐标(x,y)
∵点E在直线OB上移动
∴x=y
∴不管t为何值,E点总是“完美点”.
例题5. 已知,点P是∠MON的平分线上的一动点,射线PA交射线OM于点A,将射线PA绕点P逆时针旋转交射线ON于点B,且使∠APB+∠MON=180°.
(1)利用图1,求证:PA=PB;
(2)如图2,若点C是AB与OP的交点,当S△POB=3S△PCB时,求PB与PC的比值;
(3)若∠MON=60°,OB=2,射线AP交ON于点D,且满足且∠PBD=∠ABO,请借助图3补全图形,并求OP的长.
【解答】解:(1)作PE⊥OM,PF⊥ON,垂足为E、F
∵四边形OEPF中,∠OEP=∠OFP=90°,
∴∠EPF+∠MON=180°,已知∠APB+∠MON=180°,
∴∠EPF=∠APB,即∠EPA+∠APF=∠APF+∠FPB,
∴∠EPA=∠FPB,
由角平分线的性质,得PE=PF,
∴△EPA≌△FPB,即PA=PB;
(2)∵S△POB=3S△PCB,
∴PO=3PC,
由(1)可知△PAB为等腰三角形,则
∠PBC=(180°﹣∠APB)=∠MON=∠BOP,
又∵∠BPC=∠OPB(公共角),
∴△PBC∽△POB,
∴=,
即PB2=PO•PC=3PC2,
∴=
达标检测 领悟提升 强化落实
1. 如图,在等腰Rt△ABC中,∠C=90°,AC=8,F是AB边上的中点,点D、E分别在AC、BC边上运动,且保持AD=CE,连结DE、DF、EF,在此运动变化的过程中,下列结论:①△DEF是等腰直角三角形;②四边形CDFE不可能为正方形;③四边形CDFE的面积保持不变;④DE长度的最小值为4;⑤△CDE面积的最大值为8,其中正确的结论是______________.
答案:①②③
2. 如图,在四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于点E,且四边形ABCD的面积为8,求BE的长.
答案:
3. 如图,正方形ABCD的边长为6,点O是对角线AC,BD的交点,点E在CD上,且DE=2CE,连接
BE.过点C作CF⊥BE,垂足为点F,连接OF.求:
(1)CF的长;
(2)OF的长.
【解答】解:(1)如图,在BE上截取BG=CF,连接OG,
∵RT△BCE中,CF⊥BE,
∴∠EBC=∠ECF,
∵∠OBC=∠OCD=45°,
∴∠OBG=∠OCF,
在△OBG与△OCF中,
,
∴△OBG≌△OCF(SAS),
∴OG=OF,∠BOG=∠COF,
∴OG⊥OF,
在RT△BCE中,BC=DC=6,DE=2EC,
∴EC=2,
∴BE===2,
∵BC2=BF•BE,
则62=BF•2解得:BF=,
∴EF=BE﹣BF=,
∵CF2=BF•EF,
∴CF=;
4. 如图①,∠QPN的顶点P在正方形ABCD两条对角线的交点处,∠QPN=α,将∠QPN绕点P旋转,旋转过程中∠QPN的两边分别与正方形ABCD的边AD和CD交于点E和点F(点F与点C,D不重合).
(1)如图①,当α=90°时,DE,DF,AD之间满足的数量关系是 DE+DF=AD ;
(2)如图②,将图①中的正方形ABCD改为∠ADC=120°的菱形,其他条件不变,当α=60°时,(1)中的结论变为DE+DF=AD,请给出证明;
(3)在(2)的条件下,若旋转过程中∠QPN的边PQ与射线AD交于点E,其他条件不变,探究在整个运动变化过程中,DE,DF,AD之间满足的数量关系,直接写出结论,不用加以证明.
【解答】解:(1)正方形ABCD的对角线AC,BD交于点P,
∴PA=PD,∠PAE=∠PDF=45°,
∵∠APE+∠EPD=∠DPF+∠EPD=90°,
∴∠APE=∠DPF,
在△APE和△DPF中
∴△APE≌△DPF(ASA),
∴AE=DF,
∴DE+DF=AD;
(2)如图②,取AD的中点M,连接PM,
∵四边形ABCD为∠ADC=120°的菱形,
∴BD=AD,∠DAP=30°,∠ADP=∠CDP=60°,
∴△MDP是等边三角形,
∴PM=PD,∠PME=∠PDF=60°,
∵∠PAM=30°,
∴∠MPD=60°,
∵∠QPN=60°,
∴∠MPE=∠FPD,
在△MPE和△DPF中,
∴△MPE≌△DPF(ASA)
∴ME=DF,
∴DE+DF=AD;
5. “如图1,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D.”这里,根据已学的相似三角形的知识,易证:=.在图1这个基本图形的基础上,继续添加条件“如图2,点E是直线AC上一动点,连接DE,过点D作FD⊥ED,交直线BC于点F,设=.”
(1)探究发现:如图②,若m=n,点E在线段AC上,则= 1 ;
(2)数学思考:
①如图3,若点E在线段AC上,则= (用含m,n的代数式表示);
②当点E在直线AC上运动时,①中的结论是否仍然成立?请仅就图4的情形给出证明;
(3)拓展应用:若AC=,BC=2,DF=4,请直接写出CE的长.
【解答】解:(1)当m=n时,即:BC=AC,
∵∠ACB=90°,
∴∠A+∠ABC=90°,
∵CD⊥AB,
∴∠DCB+∠ABC=90°,
∴∠A=∠DCB,
∵∠FDE=∠ADC=90°,
∴∠FDE﹣∠CDE=∠ADC﹣∠CDE,
即∠ADE=∠CDF,
∴△ADE∽△CDF,∴=,
∵∠A=∠DCB,∠ADC=∠BDC=90°,
∴△ADC∽△CDB,
∴==1,∴=1,
故答案为1.
(2)①∵∠ACB=90°,
∴∠A+∠ABC=90°,
∵CD⊥AB,
∴∠DCB+∠ABC=90°,
∴∠A=∠DCB,
∵∠FDE=∠ADC=90°,
∴∠FDE﹣∠CDE=∠ADC﹣∠CDE,
即∠ADE=∠CDF,
∴△ADE∽△CDF,∴=,
∵∠A=∠DCB,∠ADC=∠BDC=90°,
∴△ADC∽△CDB,
∴==,∴=,
故答案为.
(3)由(2)有,△ADE∽△CDF,
∵==,
∴===,
∴CF=2AE,
在Rt△DEF中,DE=2,DF=4,
∴EF===2,
①当E在线段AC上时,在Rt△CEF中,
CF=2AE=2(AC﹣CE)=2(﹣CE),EF=2,
根据勾股定理得,CE2+CF2=EF2,
∴CE2+[2(﹣CE)]2=40
∴CE=2,或CE=﹣(舍)
而AC=<CE,
∴此种情况不存在,
6.(2019·贵阳适应性)如图①,已知AC=BC,AC⊥BC,直线MN经过点B,过点A作AD⊥MN,垂足为D,连接CD.
(1)动手操作:根据题意,请利用尺规将图①补充完整;(保留作图痕迹,不写作法)
(2)探索证明:在补充完成的图①中,猜想CD、BD与AD之间的数量关系,并说明理由;
(3)探索拓广:一天小明一家在某公园游玩时走散了,电话联系后得知,三人的位置如图②,爸爸在A处,妈妈在C处,小明在D处,B为公园大门口,若B、D在直线MN上,且AC⊥BC,AD⊥MN,AC=BC,AD=100m,CD=40m,求出小明到公园门口的距离BD的长度.
专题22 对角互补模型-中考数学几何模型(重点专练): 这是一份专题22 对角互补模型-中考数学几何模型(重点专练),文件包含专题22对角互补模型教师版-中考数学几何模型重点专练docx、专题22对角互补模型学生版-中考数学几何模型重点专练docx等2份试卷配套教学资源,其中试卷共51页, 欢迎下载使用。
中考数学专题练习17 全等与相似模型-对角互补模型: 这是一份中考数学专题练习17 全等与相似模型-对角互补模型,文件包含中考数学17全等与相似模型-对角互补模型教师版专题训练docx、中考数学17全等与相似模型-对角互补模型学生版专题训练docx等2份试卷配套教学资源,其中试卷共71页, 欢迎下载使用。
最新中考几何专项复习专题05 对角互补模型巩固练习(提优): 这是一份最新中考几何专项复习专题05 对角互补模型巩固练习(提优),文件包含中考几何专项复习专题05对角互补模型巩固练习提优教师版含解析docx、中考几何专项复习专题05对角互补模型巩固练习提优学生版docx等2份试卷配套教学资源,其中试卷共22页, 欢迎下载使用。