初中数学中考复习专题满分秘籍讲义练习二次函数中的动点有关的综合问题
展开
这是一份初中数学中考复习专题满分秘籍讲义练习二次函数中的动点有关的综合问题,共31页。试卷主要包含了如图,已知直线AB与抛物线C等内容,欢迎下载使用。
(1)求点B的坐标(结果可以含参数m);
(2)连接CA、CB,若C(0,3m),求tan∠ACB的值;
(3)如图②,在(2)的条件下,抛物线的对称轴为直线l:x=2,点P是抛物线上的一个动点,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P,使△POF成为以点P为直角顶点的的等腰直角三角形.若存在,求出所有符合条件的点P的坐标,若不存在,请说明理由.
【答案】(1)B(3m,0);(2)tan∠ACB=;
(3)点P的坐标是:()或()或()或().
【解析】
解:(1)令y=0,则有ax2﹣4amx+3am2=0,
解得:x1=m,x2=3m,
∵m>0,A在B的左边,
∴B(3m,0);
(2)如图1,过点A作AD⊥BC,垂足为点D,
由(1)可知B(3m,0),则△BOC为等腰直角三角形,
∵OC=OB=3m,
∴BC=3m,
又∵∠ABC=45°,
∴∠DAB=45°,
∴AD=BD,
∵AB=2m,
∴m,CD=2m,
∴tan∠ACB=;
(3)∵由题意知x=2为对称轴,
∴2m=2,
即m=1,
∵在(2)的条件下有(0,3m),
∴3m=3am2,
解得m=,即a=1,
∴抛物线的解析式为y=x2﹣4x+3,
①当P在对称轴的左边,如图2,过P作MN⊥y轴,交y轴于M,交l于N,
∵△OPF是等腰直角三角形,且OP=PF,
易得△OMP≌△PNF,
∴OM=PN,
∵P(m,m2﹣4m+3),
则﹣m2+4m﹣3=2﹣m,
解得:m=或,
∴P的坐标为(,)或();
②当P在对称轴的右边,
如图3,过P作MN⊥x轴于N,过F作FM⊥MN于M,
同理得△ONP≌△PMF,
∴PN=FM,
则﹣m2+4m﹣3=m﹣2,
解得:x=或;
P的坐标为()或();
综上所述,点P的坐标是:()或()或()或().
2、如图1,在平面直角坐标系xOy中,抛物线y=−x−ax−4a
相关试卷
这是一份初中数学中考复习专题满分秘籍讲义练习几何动点与变换综合性问题,共78页。
这是一份初中数学中考复习专题满分秘籍讲义练习二次函数中的线段长度有关的综合问题,共25页。试卷主要包含了如图,抛物线交x轴于点A.,如图,二次函数的图像与轴交于等内容,欢迎下载使用。
这是一份初中数学中考复习专题满分秘籍讲义练习瓜豆原理中动点轨迹不确定型最值问题,共14页。