年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2025届高考数学一轮复习教师用书第三章第六节函数的图象讲义(Word附解析)

    2025届高考数学一轮复习教师用书第三章第六节函数的图象讲义(Word附解析)第1页
    2025届高考数学一轮复习教师用书第三章第六节函数的图象讲义(Word附解析)第2页
    2025届高考数学一轮复习教师用书第三章第六节函数的图象讲义(Word附解析)第3页
    还剩12页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2025届高考数学一轮复习教师用书第三章第六节函数的图象讲义(Word附解析)

    展开

    第六节 函数的图象【必备知识·逐点夯实】【知识梳理·归纳】1.利用描点法作函数图象的方法步骤(1)确定函数的定义域.(2)化简函数的解析式.(3)讨论函数的性质,即奇偶性、周期性、单调性、最值(甚至变化趋势).(4)描点连线,画出函数的图象.2.利用图象变换法作函数的图象(1)平移变换(2)伸缩变换(3)对称变换(4)翻折变换【微点拨】函数图象的左右变换都针对自变量“x”而言,如从f(-2x)的图象到f(-2x+1)的图象是向右平移12个单位长度,其中是把x变成x-12.【基础小题·自测】1.(多维辨析)(多选题)下列结论错误的是(  )A.当x∈(0,+∞)时,函数y=|f(x)|与y=f(|x|)的图象相同B.函数y=af(x)与y=f(ax)(a>0且a≠1)的图象相同C.函数y=f(x)与y=-f(x)的图象关于原点对称D.函数y=lg x的图象关于x=3对称的图象对应的函数是y=lg(6-x)【解析】选ABC.2.(必修第一册P85练习T1变条件、变设问)已知图①中的图象是函数y=f(x)的图象,则图②中的图象对应的函数可能是(  )A.y=f(|x|) B.y=|f(x)|C.y=f(-|x|) D.y=-f(-|x|)【解析】选C.因为题图②中的图象是在题图①的基础上,去掉函数y=f(x)的图象在y轴右侧的部分,然后将y轴左侧图象翻折到y轴右侧得到的,所以题图②中的图象对应的函数可能是y=f(-|x|).3. (2022·全国乙卷)如图是下列四个函数中的某个函数在区间[-3,3]的大致图象,则该函数是(  )A.y=-x3+3xx2+1 B.y=x3-xx2+1C.y=2xcosxx2+1 D.y=2sinxx2+1【解析】选A.设f(x)=x3-xx2+1,则f(1)=0,故排除B;设h(x)=2xcosxx2+1,当x∈(0,π2)时,00,即实数a的取值范围是(0,+∞).【巧记结论·速算】1.函数图象自身的轴对称(1)f(-x)=f(x)⇔函数y=f(x)的图象关于y轴对称;(2)函数y=f(x)的图象关于直线x=a对称⇔f(a+x)=f(a-x)⇔f(x)=f(2a-x)⇔f(-x)=f(2a+x);(3)若函数y=f(x)的定义域为R,且有f(a+x)=f(b-x),则函数y=f(x)的图象关于直线x=a+b2对称.2.函数图象自身的中心对称(1)f(-x)=-f(x)⇔函数y=f(x)的图象关于原点对称;(2)函数y=f(x)的图象关于点(a,0)成中心对称⇔f(a+x)=-f(a-x)⇔f(x)=-f(2a-x)⇔f(-x)=-f(2a+x);(3)函数y=f(x)的图象关于点(a,b)成中心对称⇔f(a+x)=2b-f(a-x)⇔f(x)=2b-f(2a-x).3.两个函数图象之间的对称关系(1)函数y=f(a+x)与y=f(b-x)的图象关于直线x=b-a2对称(由a+x=b-x得对称轴方程);(2)函数y=f(x)与y=f(2a-x)的图象关于直线x=a对称;(3)函数y=f(x)与y=2b-f(-x)的图象关于点(0,b)对称;(4)函数y=f(x)与y=2b-f(2a-x)的图象关于点(a,b)对称.【即时练】1.下列说法正确的是(  )A.若函数y=f(x)满足f(1+x)=f(1-x),则函数y=f(x)的图象关于直线x=1对称B.若函数y=f(x)满足f(x+1)=f(x-1),则函数y=f(x)的图象关于直线x=1对称C.当x∈(0,+∞)时,函数y=f(|x|)的图象与y=|f(x)|的图象相同D.函数y=f(1-x)的图象可由y=f(-x)的图象向左平移1个单位长度得到【解析】选A.由函数的性质知A正确,B错误;令f(x)=-x,则当x∈(0,+∞)时,f(|x|)=f(x)=-x,|f(x)|=x,f(|x|)≠|f(x)|,故C错误;y=f(-x)的图象向左平移1个单位长度得到y=f(-x-1)的图象,故D错误.2.函数y=f(-2-x)与y=f(x+2)的图象关于直线x=-2对称. 【解析】由-2-x=x+2,得x=-2,所以函数y=f(-2-x)与y=f(x+2)的图象关于直线x=-2对称.【核心考点·分类突破】考点一 作函数的图象[例1]作出下列函数的图象:(1)y=(12)|x|;(2)y=|log2(x+1)|;(3)y=x2-2|x|-1.【解析】(1)先作出y=(12)x的图象,保留y=(12)x图象中x≥0的部分,再作出y=(12)x的图象中x>0的部分关于y轴的对称部分,即得y=(12)|x|的图象,如图①实线部分.(2)将函数y=log2x的图象向左平移一个单位长度,再将x轴下方的部分沿x轴翻折上去,即可得到函数y=|log2(x+1)|的图象,如图②.(3)因为y=x2-2x-1,x≥0,x2+2x-1,x0,排除C.(2)(2023·天津高考)函数f(x)的图象如图所示,则f(x)的解析式可能为(  )A.5(ex-e-x)x2+2 B.5sinxx2+1C.5(ex+e-x)x2+2 D.5cosxx2+1【解析】选D.由题干中函数图象可知,f(x)图象关于y轴对称,其为偶函数,且f(-2)=f(2)0时,5(ex-e-x)x2+2>0,5(ex+e-x)x2+2>0,即A,C中函数在(0,+∞)上函数值为正,排除A,C.(3)函数f(x)=xln x的图象如图所示,则函数y=f(1-x)的大致图象为(  )【解析】选D.方法一:函数f(x)的定义域为(0,+∞),由1-x>0得x0,排除B.方法二:将函数f(x)的图象进行以y轴为对称轴的翻折变换,得到函数y=f(-x)的图象,再将图象向右平移一个单位长度,即可得到函数y=f(-(x-1))=f(1-x)的图象.【解题技法】函数图象的识别可从以下几个方面入手(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的周期性,判断图象的循环往复.(5)从函数的特征点,排除不合要求的图象.【对点训练】1.已知函数f(x)=x(ex-e-x)|x|-1,则f(x)的图象大致是(  )【解析】选D.函数f(x)=x(ex-e-x)|x|-1的定义域为{x|x≠±1},f(-x)=-x(e-x-ex)|x|-1=f(x),则f(x)为偶函数,其图象关于y轴对称,可排除A;当0

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map