辽阳市重点中学2023-2024学年八年级数学第一学期期末达标检测试题【含解析】
展开这是一份辽阳市重点中学2023-2024学年八年级数学第一学期期末达标检测试题【含解析】,共20页。试卷主要包含了考生要认真填写考场号和座位序号,下列计算,正确的是,下列计算结果,正确的是等内容,欢迎下载使用。
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每题4分,共48分)
1.如图,△ABC的面积是1cm2,AD垂直于∠ABC的平分线BD于点D,连接DC,则与△BDC面积相等的图形是( )
A.B.C.D.
2.如图所示,△ABC的顶点A、B、C在边长为1的正方形网格的格点上,于点D,则BD的长为
A.3B.C.4D.
3.长度分别为3,7,a的三条线段能组成一个三角形,则a的值可以是( )
A.3B.4C.6D.10
4.如图,点D在AB上,点E在AC上,AB=AC添加下列一个条件后,还不能证明△ABE≌△ACD的是( )
A.AD=AEB.BD=CEC.∠B=∠CD.BE=CD
5.如图,∠AOB=150°,OC平分∠AOB,P为OC上一点,PD∥OA交OB于点D,PE⊥OA于点E.若OD=4,则PE的长为( )
A.2B.2.5C.3D.4
6.解分式方程时,去分母化为一元一次方程,正确的是( )
A.x+2=3B.x﹣2=3C.x﹣2=3(2x﹣1)D.x+2=3(2x﹣1)
7.如图,已知∠ACB=∠DBC,添加以下条件,不能判定△ABC≌△DCB的是( )
A.∠ABC=∠DCBB.∠ABD=∠DCA
C.AC=DBD.AB=DC
8.下列计算,正确的是( )
A.B.a3÷a=a3C.a2+a2=a4D.(a2)2=a4
9.以下列数值为长度的各组线段中,能组成三角形的是( )
A.2,4,7B.3,3,6C.5,8,2D.4,5,6
10.下列计算结果,正确的是( )
A.B.
C.D.
11.若分式中的的值同时扩大到原来的倍, 则分式的值( )
A.变为原来的倍B.变为原来的倍
C.变为原来的D.不变
12.若,则x的取值范围是( )
A.x≥3B.x<3C.x≤3D.x>3
二、填空题(每题4分,共24分)
13.如图,在中,,,,将绕点逆时针旋转得到,连接,则的长为__________.
14.一组数据:1、2、4、3、2、4、2、5、6、1,它们的中位数为_____.
15.A,B两地相距48千米,一艘轮船从A地顺流航行至B地,又立即从B地逆流返回A地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x千米/时,则可列方程____________.
16.如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若,则的度数为__________.
17.·(-)的值为_______
18.如图,在中,,以点为圆心,为半径画弧,交线段于点;以点为圆心,长为半径画弧,交线段于点.设,,若,则__________(用含的式子表示).
三、解答题(共78分)
19.(8分)如图,△ABC是等腰直角三角形,且∠ACB=90°,点D是AB边上的一点(点D不与A,B重合),连接CD,过点C作CE⊥CD,且CE=CD,连接DE,AE.
(1)求证:△CBD≌△CAE;
(2)若AD=4,BD=8,求DE的长.
20.(8分)(阅读材科)小明同学发现这样一个规律:两个顶角相等的等腰三角形,
如果具有公共的项角的顶点,并把它们的底角顶点连接起来则形成一组全等的三角形,小明把具有这个规律的图形称为“手拉手”图形.如图1,在“手拉手”图形中,小明发现若∠BAC=∠DAE,AB=AC,AD=AE,则△ABD≌△ACE.
(材料理解)(1)在图1中证明小明的发现.
(深入探究)(2)如图2,△ABC和△AED是等边三角形,连接BD,EC交于点O,连接AO,下列结论:①BD=EC;②∠BOC=60°;③∠AOE=60°;④EO=CO,其中正确的有 .(将所有正确的序号填在横线上).
(延伸应用)(3)如图3,AB=BC,∠ABC=∠BDC=60°,试探究∠A与∠C的数量关系.
21.(8分)(1)计算:2a2•a4﹣(2a2)3+7a6
(2)因式分解:3x3﹣12x2+12x
22.(10分)如图1,在△ABC和△ADE中,∠BAC=∠EAD,AB=AC,AD=AE,连接CD、AE交于点F.
(1)求证:BE=CD.
(2)当∠BAC=∠EAD=30°,AD⊥AB时(如图2),延长DC、AB交于点G,请直接写出图中除△ABC、△ADE以外的等腰三角形.
23.(10分)某种优质蜜柚,投入市场销售时,经调查,该蜜柚每天销售量y(千克)与销售单价x(元/千克)之间符合一次函数关系,如图所示.
(1)求y与x的函数关系式;
(2)某农户今年共采摘该蜜柚4500千克,其保质期为40天,若以18元/千克销售,问能否在保质期内销售完这批蜜柚?请说明理由.
24.(10分)小明的妈妈在菜市场买回3斤萝卜,2斤排骨,准备做萝卜排骨汤,妈妈说:“今天买这两样菜共花了78.7元,去年这时买3斤萝卜,2斤排骨只要43元”.爸爸说:“报纸上说了萝卜的单价下降10%,排骨单价上涨90%”,请你来算算,小明的妈妈去年买的萝卜和排骨的单价分别是多少?
25.(12分)在△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B、C重合),以AD为直角边在AD右侧作等腰直角三角形ADE,且∠DAE=90°,连接CE.
(1)如图①,当点D在线段BC上时:
①BC与CE的位置关系为 ;
②BC、CD、CE之间的数量关系为 .
(2)如图②,当点D在线段CB的延长线上时,结论①,②是否仍然成立?若不成立,请你写出正确结论,并给予证明.
(3)如图③,当点D在线段BC的延长线上时,BC、CD、CE之间的数量关系为 .
26.某居民小区为了绿化小区环境,建设和谐家园,准备将一块周长为76米的长方形空地,设计成长和宽分别相等的9块小长方形,如图所示,计划在空地上种上各种花卉,经市场预测,绿化每平方米空地造价210元,请计算,要完成这块绿化工程,预计花费多少元?
参考答案
一、选择题(每题4分,共48分)
1、D
【分析】利用等腰三角形 “三线合一”的性质以及与三角形中线有关的面积计算,求得阴影面积为0.5,再计算各选项中图形的面积比较即可得出答案.
【详解】延长AD交BC于E,
∵BD是∠ABC平分线,且BD⊥AE,
根据等腰三角形“三线合一”的性质得:AD=DE,
∴,,
∴,
A、,不符合题意;
B、,不符合题意;
C、,不符合题意;
D、,符合题意;
故选:D.
【点睛】
本题考查了等腰三角形的判定和性质,三角形中线有关的面积计算,熟知等腰三角形“三线合一”的性质是解题的关键.
2、A
【解析】根据图形和三角形的面积公式求出△ABC的面积,根据勾股定理求出AC,根据三角形的面积公式计算即可.
【详解】解:过点A作AE⊥BC于点E,
△ABC的面积=×BC×AE=,
由勾股定理得,AC==5,则×5×BD=,
解得BD=3,
故选:A.
【点睛】
本题考查勾股定理的应用,掌握在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解题的关键.
3、C
【分析】根据三角形的三边关系:①两边之和大于第三边,②两边之差小于第三边即可得到答案.
【详解】解:7−3<x<7+3,
即4<x<10,
只有选项C符合题意,
故选:C.
【点睛】
此题主要考查了三角形的三边关系,解题的关键是熟练掌握三角形的三边关系定理.
4、D
【分析】判定全等三角形时,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.
【详解】解:A、∵在△ABE和△ACD中
∴△ABE≌△ACD(SAS),故本选项不符合题意;
B、∵AB=AC,BD=CE,
∴AD=AE,
在△ABE和△ACD中
∴△ABE≌△ACD(SAS),故本选项不符合题意;
C、∵在△ABE和△ACD中
∴△ABE≌△ACD(ASA),故本选项不符合题意;
D、根据AB=AC,BE=CD和∠A=∠A不能推出△ABE≌△ACD,故本选项符合题意;
故选:D.
【点睛】
本题主要考查了全等三角形的判定,全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.
5、A
【解析】分析:根据平行线的性质,可得∠PDO的度数,然后过O作OF⊥PD于F,根据平行线的推论和30°角所在的直角三角形的性质可求解.
详解:∵PD∥OA,∠AOB=150°
∴∠PDO+∠AOB=180°
∴∠PDO=30°
过O作OF⊥PD于F
∵OD=4
∴OF=×OD=2
∵PE⊥OA
∴FO=PE=2.
故选A.
点睛:此题主要考查了直角三角形的性质,关键是通过作辅助线,利用平行线的性质和推论求出FO=PE.
6、C
【分析】最简公分母是2x﹣1,方程两边都乘以(2x﹣1),即可把分式方程便可转化成一元一次方程.
【详解】方程两边都乘以(2x﹣1),得
x﹣2=3(2x﹣1),
故选C.
【点睛】
本题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.
7、D
【分析】根据全等三角形的判定定理 逐个判断即可.
【详解】A、∵在△ABC和△DCB中
∴△ABC≌△DCB(ASA),故本选项不符合题意;
B、∵∠ABD=∠DCA,∠DBC=∠ACB,
∴∠ABD+∠DBC=∠ACD+∠ACB,
即∠ABC=∠DCB,
∵在△ABC和△DCB中
∴△ABC≌△DCB(ASA),故本选项不符合题意;
C、∵在△ABC和△DCB中
∴△ABC≌△DCB(SAS),故本选项不符合题意;
D、根据∠ACB=∠DBC,BC=BC,AB=DC不能推出△ABC≌△DCB,故本选项符合题意;
故选:D.
【点睛】
本题考查了全等三角形的判定定理,能灵活运用全等三角形的判定定理进行推理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.
8、D
【分析】运用同底数幂的乘法、同底数幂除法、合并同类项以及幂的乘方进行运算即可判断.
【详解】A、错误,该选项不符合题意;
B、 错误,该选项不符合题意;
C、错误,该选项不符合题意;
D、正确,该选项符合题意;
故选:D.
【点睛】
本题考查了同底数幂的乘法、同底数幂除法、合并同类项以及幂的乘方的运算法则,掌握相关运算法则是解答本题的关键.
9、D
【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.
【详解】A、4+2=6<7,不能组成三角形;
B、3+3=6,不能组成三角形;
C、5+2=7<8,不能组成三角形;
D、4+5=9>6,能组成三角形.
故选D.
【点睛】
此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.
10、C
【分析】结合二次根式混合运算的运算法则进行求解即可.
【详解】A. ,故本选项计算错误;
B. ,故本选项计算错误;
C. ,故此选项正确;
D. ,故此选项计算错误
故选:C.
【点睛】
本题考查了二次根式的混合运算,解答本题的关键在于熟练掌握二次根式混合运算的运算法则.
11、B
【分析】的值同时扩大到原来的倍可得,再与进行比较即可.
【详解】将分式中的的值同时扩大到原来的倍,可得
则分式的值变为原来的倍
故答案为:B.
【点睛】
本题考查了分式的变化问题,掌握分式的性质是解题的关键.
12、C
【分析】根据二次根式的非负性解答即可.
【详解】∵,而,
∴,,解得:,
故选C.
【点睛】
本题考查绝对值、二次根式的非负性,理解绝对值的意义是关键.
二、填空题(每题4分,共24分)
13、
【分析】根据旋转的性质可得出,在中利用勾股定理求解即可.
【详解】解:∵,,,
∴,
∵将绕点逆时针旋转得到,
∴
∴
∴在中,.
故答案为:.
【点睛】
本题考查的知识点是旋转的性质以及勾股定理,利用旋转的性质得出是解此题的关键.
14、2.1
【分析】将数据重新排列,再根据中位数的定义求解可得.
【详解】解:将这组数据重新排列为1、1、2、2、2、3、4、4、1、6,
所以这组数据的中位数为=2.1,
故答案为:2.1.
【点睛】
本题主要考查中位数,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
15、
【分析】根据题意可列出相对应的方程,本题的等量关系为:顺流时间+逆流时间=9,从而可得解答本题;
【详解】由题意可得,
顺流时间为:;逆流时间为:.
所列方程为:.
【点睛】
本题主要考查由实际问题抽象出分式方程的知识点.
16、
【分析】延长AB交CF于E,求出∠ABC,根据平行线性质得出∠AEC=∠2=25°,再根据三角形外角性质求出∠1即可.
【详解】解:如图,延长AB交CF于E,
∵∠ACB=90°,∠A=30°,
∴∠ABC=60°,
∵GH∥EF,
∴∠AEC=∠2=25°,
∴∠1=∠ABC-∠AEC=35°.
故答案为:35°.
【点睛】
本题考查了三角形的内角和定理,三角形外角性质,平行线性质的应用,解题时注意:两直线平行,内错角相等.
17、-6xy
【解析】试题分析:原式===-6xy.
故答案为-6xy.
18、
【分析】根据作图,结合线段的和差关系利用勾股定理求解即可.
【详解】根据作图得,BC=BD=a,AD=AE,
当AD=EC时,即AE=EC,
∴E点为AC边的中点,
∵AC=b,
∴AD=,
在Rt△ABC中,AC=b,BC=a,AB=,
∴
解得,a=.
故答案为:.
【点睛】
此题考查了运用勾股定理求解直角三角形,熟练掌握勾股定理是解题的关键.
三、解答题(共78分)
19、(1)见解析;(2)4.
【分析】(1)根据CE⊥CD,∠ACB=90°得∠BCD=∠ACE,再根据AC=BC,CE=CD,即可证明△CBD≌△CAE(SAS);
(2)通过△CBD≌△CAE(SAS)得出BD=AE,∠DAE=90°,根据勾股定理求出DE的长即可.
【详解】(1)∵CE⊥CD,∠ACB=90°,
∴∠DCE=∠ACB=90°,
∴∠BCD=∠ACE,
∵AC=BC,CE=CD,
在△BCD与△ACE中,
,
∴△CBD≌△CAE(SAS).
(2)∵△CBD≌△CAE,
∴BD=AE,∠CBD=∠CAE=45°,
∴∠DAE=90°,
∴.
【点睛】
本题考查了全等三角形的综合问题,掌握全等三角形的性质以及判定定理、勾股定理是解题的关键.
20、(1)证明见解析;(2)①②③;(3)∠A+∠C=180°.
【分析】(1)利用等式的性质得出∠BAD=∠CAE,即可得出结论;
(2)同(1)的方法判断出△ABD≌△ACE,得出BD=CE,再利用对顶角和三角形的内角和定理判断出∠BOC=60°,再判断出△BCF≌△ACO,得出∠AOC=120°,进而得出∠AOE=60°,再判断出BF<CF,进而判断出∠OBC>30°,即可得出结论;
(3)先判断出△BDP是等边三角形,得出BD=BP,∠DBP=60°,进而判断出△ABD≌△CBP(SAS),即可得出结论.
【详解】(1)证明:∵∠BAC=∠DAE,
∴∠BAC+∠CAD=∠DAE+∠CAD,
∴∠BAD=∠CAE,
在△ABD和△ACE中,
,
∴△ABD≌△ACE;
(2)如图2,
∵△ABC和△ADE是等边三角形,
∴AB=AC,AD=AE,∠BAC=∠DAE=60°,
∴∠BAD=∠CAE,
在△ABD和△ACE中,
,
∴△ABD≌△ACE,
∴BD=CE,①正确,∠ADB=∠AEC,
记AD与CE的交点为G,
∵∠AGE=∠DGO,
∴180°-∠ADB-∠DGO=180°-∠AEC-∠AGE,
∴∠DOE=∠DAE=60°,
∴∠BOC=60°,②正确,
在OB上取一点F,使OF=OC,
∴△OCF是等边三角形,
∴CF=OC,∠OFC=∠OCF=60°=∠ACB,
∴∠BCF=∠ACO,
∵AB=AC,
∴△BCF≌△ACO(SAS),
∴∠AOC=∠BFC=180°-∠OFC=120°,
∴∠AOE=180°-∠AOC=60°,③正确,
连接AF,要使OC=OE,则有OC=CE,
∵BD=CE,
∴CF=OF=BD,
∴OF=BF+OD,
∴BF<CF,
∴∠OBC>∠BCF,
∵∠OBC+∠BCF=∠OFC=60°,
∴∠OBC>30°,而没办法判断∠OBC大于30度,
所以,④不一定正确,
即:正确的有①②③,
故答案为①②③;
(3)如图3,
延长DC至P,使DP=DB,
∵∠BDC=60°,
∴△BDP是等边三角形,
∴BD=BP,∠DBP=60°,
∵∠BAC=60°=∠DBP,
∴∠ABD=∠CBP,
∵AB=CB,
∴△ABD≌△CBP(SAS),
∴∠BCP=∠A,
∵∠BCD+∠BCP=180°,
∴∠A+∠BCD=180°.
【点睛】
此题考查三角形综合题,等腰三角形的性质,等边三角形的性质,全等三角形的判定和性质,构造等边三角形是解题的关键.
21、(1)a6;(1)3x(x﹣1)1.
【分析】(1)根据单项式乘单项式的运算法则、合并同类项法则计算;
(1)利用提公因式法和完全平方公式因式分解.
【详解】(1)原式=1a6﹣8a6+7a6=a6;
(1)原式=3x(x1﹣4x+4)=3x(x﹣1)1.
【点睛】
本题考查的是单项式乘单项式、多项式的因式分解,掌握单项式乘单项式的运算法则、提公因式法和完全平方公式因式分解的一般步骤是解题的关键.
22、(1)见解析;(2)△ACF是等腰三角形,△ADG是等腰三角形,△DEF是等腰三角形,△ECD是等腰三角形.
【分析】(1)由“SAS”可证△ACD≌△ABE,可得BE=CD;
(2)如图2,图形中有四个等腰三角形:分别是①△ACF是等腰三角形,②△ADG是等腰三角形,③△DEF是等腰三角形;④△ECD是等腰三角形;根据已知角的度数依次计算各角的度数,根据两个角相等的三角形是等腰三角形得出结论.
【详解】解:(1)如图1,∵∠BAC=∠EAD,
∴∠BAC+∠CAE=∠EAD+∠CAE,
即∠BAE=∠CAD,且AB=AC,AD=AE,
∴△ACD≌△ABE(SAS)
∴BE=CD;
(2)如图2,
①∵∠BAC=∠EAD=30°,
∴∠ABC=∠ACB=∠AED=∠ADE=75°,
由(1)得:∠ACD=∠ABC=75°,
∠DCE=∠BAC=30°,
∵AD⊥AB,
∴∠BAD=90°,
∴∠CAE=30°,
∴∠AFC=180°﹣30°﹣75°=75°,
∴∠ACF=∠AFC,
∴△ACF是等腰三角形,
②∵∠BCG=∠DCE=30°,∠ABC=75°,
∴∠G=45°,
在Rt△AGD中,∠ADG=45°,
∴△ADG是等腰三角形,
③∠EDF=75°﹣45°=30°,
∴∠DEF=∠DFE=75°,
∴△DEF是等腰三角形;
④∵∠ECD=∠EDC=30°,
∴△ECD是等腰三角形.
【点睛】
本题考查了全等三角形的判定和性质,等腰三角形的判定,三角形内角和定理,灵活运用这些性质进行推理是本题的关键.
23、(1)y=﹣10x+300;(2)能在保质期内销售完这批蜜柚,理由见解析
【分析】(1)根据题意和函数图象中的数据,可以求得y与x的函数关系式;
(2)将x=18代入(1)的函数解析式,求出相应的y的值,从而可以求得40天的销售量,然后与4500比较大小即可解答本题.
【详解】解:(1)设y与x的函数关系式为y=kx+b,
将点(10,200),(15,150)代入解析式中得
解得
即y与x的函数关系式为y=﹣10x+300;
(2)能在保质期内销售完这批蜜柚,
理由:将x=18代入y=﹣10x+300,得
y=﹣10×18+300=120,
∵120×40=4800>4500,
∴能在保质期内销售完这批蜜柚.
【点睛】
本题主要考查一次函数的应用,掌握待定系数法是解题的关键.
24、小明的妈妈去年买的萝卜的单价为1元/斤,排骨的单价为20元/斤.
【分析】设小明的妈妈去年买的萝卜的单价为x元/斤,排骨的单价为y元/斤,根据总价=单价×数量结合妈妈今天和去年买3斤萝卜、2斤排骨所花钱数,即可得出关于x,y的二元一次方程组,解之即可得出结论.
【详解】解:设小明的妈妈去年买的萝卜的单价为x元/斤,排骨的单价为y元/斤,
依题意,得:,
解得:.
答:小明的妈妈去年买的萝卜的单价为1元/斤,排骨的单价为20元/斤.
【点睛】
本题考查了二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程组,再求解.
25、(1)①BC⊥CE;②BC=CD+CE;(2)结论①成立,②不成立,结论:CD=BC+CE;(3)CE=BC+CD.
【解析】(1)①利用条件求出△ABD≌△ACE,随之即可得出位置关系.
②根据BD=CE,可得BC=BD+CD=CE+CD.
(2)根据第二问的条件得出△ABD≌△ACE,随之即可证明结论是否成立.
(3)分析新的位置关系得出△ABD≌△ACE,即可得出CE=BC+CD.
【详解】(1)如图1.
∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE.在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=CE,∠B=∠ACE=45°,①∵∠ACE=45°=∠ACB,∴∠BCE=45°+45°=90°,即BD⊥CE;
②∵BD=CE,∴BC=BD+CD=CE+CD.
故答案为:BC⊥CE,BC=CD+CE;
(2)结论①成立,②不成立,结论:CD=BC+CE
理由:如图2中,∵∠BAC=∠DAE=90°,∴∠BAC﹣∠BAE=∠DAE﹣∠BAE,即∠BAD=∠EAC.在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=CE,∠ACE=∠ABD=135°,∴CD=BC+BD=BC+CE
∵∠ACB=45°
∴∠DCE=90°,∴CE⊥BC;
(3)如图3中,∵∠BAC=∠DAE=90°,∴∠BAC+∠CAD=∠DAE+∠CAD
即∠BAD=∠CAE,∴在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=CE,∠ACE=∠ABC.
∵AB=AC,∴∠ABC=∠ACB=45°,∴BD=BC+CD,即CE=BC+CD.
故答案为:CE=BC+CD.
【点睛】
本题考查了复杂图形中证明三角形全等的条件,掌握证明条件是解题关键.
26、要完成这块绿化工程,预计花费75600元.
【分析】设小长方形的长为x米,宽为y米,根据大长方形周长为76米,小长方形宽的5倍等于长的2倍,据此列方程组求解,然后求出面积,最终求得花费.
【详解】设小长方形的长为x米,宽为y米,
由题意得,
,
解得:,
则大长方形的长为20米,宽为18米,面积为:20×18=360平方米,
预计花费为:210×360=75600(元),
答:要完成这块绿化工程,预计花费75600元.
【点睛】
本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,根据图形,设出未知数,找出合适的等量关系,列方程组求解.
相关试卷
这是一份那曲市重点中学2023-2024学年八年级数学第一学期期末达标测试试题【含解析】,共18页。试卷主要包含了考生必须保证答题卡的整洁,某一次函数的图象经过点等内容,欢迎下载使用。
这是一份辽阳市重点中学2023-2024学年数学八上期末调研模拟试题【含解析】,共19页。试卷主要包含了考生要认真填写考场号和座位序号,下列各式中,是分式的有,计算 的结果为,点P,已知,下面说法中,正确的是等内容,欢迎下载使用。
这是一份辽阳市重点中学2023-2024学年数学八年级第一学期期末调研模拟试题【含解析】,共16页。试卷主要包含了下列计算中正确的是,用三角尺可按下面方法画角平分线,估计的值在,下列命题中是真命题的是等内容,欢迎下载使用。