














第十章 §10.6 二项分布、超几何分布与正态分布-2025年新高考数学一轮复习(课件+讲义+练习)
展开1、揣摩例题。课本上和老师讲解的例题,一般都具有一定的典型性和代表性。要认真研究,深刻理解,要透过“样板”,学会通过逻辑思维,灵活运用所学知识去分析问题和解决问题,特别是要学习分析问题的思路、解决问题的方法,并能总结出解题的规律。 2、精练习题。复习时不要搞“题海战术”,应在老师的指导下,选一些源于课本的变式题,或体现基本概念、基本方法的基本题,通过解题来提高思维能力和解题技巧,加深对所学知识的深入理解。在解题时,要独立思考,一题多思,一题多解,反复玩味,悟出道理。 3、加强审题的规范性。每每大考过后,总有同学抱怨没考好,纠其原因是考试时没有注意审题。审题决定了成功与否,不解决这个问题势必影响到高考的成败。那么怎么审题呢? 应找出题目中的已知条件 ;善于挖掘题目中的隐含条件 ;认真分析条件与目标的联系,确定解题思路 。 4、重视错题。“错误是最好的老师”,但更重要的是寻找错因,及时进行总结,三五个字,一两句话都行,言简意赅,切中要害,以利于吸取教训,力求相同的错误不犯第二次。
§10.6 二项分布、超几何分布与正态分布
1.理解二项分布、超几何分布的概念,能解决一些简单的实际问题.2.借助正态曲线了解正态分布的概念,并进行简单应用.
第一部分 落实主干知识
第二部分 探究核心题型
1.二项分布(1)伯努利试验只包含 可能结果的试验叫做伯努利试验;将一个伯努利试验独立地重复进行n次所组成的随机试验称为 .
(2)二项分布一般地,在n重伯努利试验中,设每次试验中事件A发生的概率为p(0(3)两点分布与二项分布的均值、方差①若随机变量X服从两点分布,则E(X)= ,D(X)= .②若X~B(n,p),则E(X)= ,D(X)= .
2.超几何分布一般地,假设一批产品共有N件,其中有M件次品.从N件产品中随机抽取n件(不放回),用X表示抽取的n件产品中的次品数,则X的分布列为P(X=k)= ,k=m,m+1,m+2,…,r,其中n,N,M∈N*,M≤N,n≤N,m=max{0,n-N+M},r=min{n,M}.如果随机变量X的分布列具有上式的形式,那么称随机变量X服从超几何分布.
3.正态分布(1)定义若随机变量X的概率分布密度函数为f(x)= ,x∈R,其中μ∈R,σ>0为参数,则称随机变量X服从正态分布,记为 .(2)正态曲线的特点①曲线是单峰的,它关于直线 对称;②曲线在 处达到峰值 ;③当|x|无限增大时,曲线无限接近x轴.
(3)3σ原则①P(μ-σ≤X≤μ+σ)≈0.682 7;②P(μ-2σ≤X≤μ+2σ)≈0.954 5;③P(μ-3σ≤X≤μ+3σ)≈0.997 3.(4)正态分布的均值与方差若X~N(μ,σ2),则E(X)= ,D(X)= .
1.“二项分布”与“超几何分布”的区别:有放回抽取问题对应二项分布,不放回抽取问题对应超几何分布,当总体容量很大时,超几何分布可近似为二项分布来处理.
1.判断下列结论是否正确.(请在括号中打“√”或“×”)(1)两点分布是二项分布当n=1时的特殊情形.( )(2)若X表示n次重复抛掷1枚骰子出现点数是3的倍数的次数,则X服从二项分布.( )(3)从装有3个红球、3个白球的盒中有放回地任取一个球,连取3次,则取到红球的个数X服从超几何分布.( )(4)当μ取定值时,正态曲线的形状由σ确定,σ越小,曲线越“矮胖”.( )
3.某班有48名同学,一次考试后的数学成绩服从正态分布N(80,102),则理论上在80分到90分的人数约是A.32 B.16 C.8 D.20
因为数学成绩近似地服从正态分布N(80,102),所以P(|x-80|≤10)≈0.682 7.根据正态密度曲线的对称性可知,位于80分到90分之间的概率是位于70分到90分之间的概率的一半,所以理论上在80分到90分的人数是 ×0.682 7×48≈16.
4.(选择性必修第三册P78例4改编)在含有3件次品的10件产品中,任取4件,X表示取到的次品的个数,则P(X=1)=_____.
例1 (2023·广东大湾区联考)某工厂车间有6台相同型号的机器,各台机器相互独立工作,工作时发生故障的概率都是 ,且一台机器的故障能由一个维修工处理.已知此厂共有甲、乙、丙3名维修工,现有两种配备方案,方案一:由甲、乙、丙三人维护,每人负责2台机器;方案二:由甲、乙两人共同维护6台机器.(1)对于方案一,设X为甲维护的机器同一时刻发生故障的台数,求X的分布列与均值E(X);
所以随机变量X的分布列为
(2)在两种方案下,分别计算机器发生故障时不能得到及时维修的概率,并以此为依据来判断,哪种方案能使工厂的生产效率更高?
对于方案一:“机器发生故障时不能及时维修”等价于“甲、乙、丙三人中,至少有一人负责的2台机器同时发生故障”,考查反面处理这个问题.
所以P2
(1)设甲3次点球的总得分为X,求X的分布列和均值;
设甲3次点球射进的次数为Y,
Y的可能取值为0,1,2,3,且X=50Y,则X的所有可能的取值为0,50,100,150.
(2)求乙总得分为100分的概率.
设“乙第i次射进点球”为事件Ai(i=1,2,3),
例2 (2023·宿州质检)宿州号称“中国云都”,拥有华东最大的云计算数据中心、CG动画集群渲染基地,是继北京、上海、合肥、济南之后的全国第5家量子通信节点城市.为了统计智算中心的算力,现从全市n个大型机房和6个小型机房中随机抽取若干机房进行算力分析,若一次抽取2个机房,全是小型机房的概率为 .(1)求n的值;
解得n=4.即n的值为4.
(2)若一次抽取3个机房,假设抽取的小型机房的个数为X,求X的分布列和均值.
X的可能取值为0,1,2,3.
则随机变量X的分布列为
(1)超几何分布描述的是不放回抽样问题,随机变量为抽到的某类个体的个数.超几何分布的特征是:①考察对象分两类;②已知各类对象的个数;③从中抽取若干个个体,考查某类个体数X的分布列.(2)超几何分布主要用于抽检产品、摸不同类别的小球等概率模型,其本质是古典概型.
跟踪训练2 (2024·安庆模拟)乡村民宿立足农村,契合了现代人远离喧嚣、亲近自然、寻味乡愁的美好追求.某镇在旅游旺季前夕,为了解各乡村的普通型民宿和品质型民宿的品质,随机抽取了8家规模较大的乡村民宿,统计得到各家的房间数如下表:
(1)从这8家中随机抽取3家,在抽取的这3家的普通型民宿的房间均不低于10间的条件下,求这3家的品质型民宿的房间均不低于10间的概率;
由题可知这8家乡村民宿中普通型民宿的房间不低于10间的有6家,品质型民宿和普通型民宿的房间均不低于10间的有4家.记“这3家的普通型民宿的房间均不低于10间”为事件A,“这3家的品质型民宿的房间均不低于10间”为事件B,
(2)从这8家中随机抽取4家,记X为抽取的这4家中普通型民宿的房间不低于15间的家数,求X的分布列和均值.
这8家乡村民宿中普通型民宿的房间不低于15间的有3家,故X的所有可能取值为0,1,2,3.
例3 (1)(2023·烟台模拟)新能源汽车具有零排放、噪声小、能源利用率高等特点,近年来备受青睐.某新能源汽车制造企业为调查其旗下A型号新能源汽车的耗电量(单位:kW·h/100 km)情况,随机调查得到了1 200个样本,据统计该型号新能源汽车的耗电量ξ~N(13,σ2),若P(12<ξ<14)=0.7,则样本中耗电量不小于14 kW·h/100 km的汽车大约有A.180辆 B.360辆C.600辆 D.840辆
因为ξ~N(13,σ2),且P(12<ξ<14)=0.7,
所以样本中耗电量不小于14 kW·h/100 km的汽车大约有1 200×0.15=180(辆).
(2)(2023·长沙市明德中学模拟)李明上学有时坐公交车,有时骑自行车.他各记录了50次坐公交车和骑自行车所花的时间,通过统计相关数据后,发现坐公交车用时X和骑自行车用时Y都近似服从正态分布.绘制了概率分布密度曲线,如图所示,则下列哪种情况下,应选择骑自行车A.有26 min可用B.有30 min可用C.有34 min可用D.有38 min可用
由题意,应选择在给定时间内不迟到的概率大的交通工具.根据X和Y的分布密度曲线图可知,P(X≤26)>P(Y≤26),P(X≤30)>P(Y≤30),P(X≤34)>P(Y≤34),P(X≤38)所以如果有38 min可用,那么骑自行车不迟到的概率大,应选择骑自行车.
解决正态分布问题的三个关键点(1)对称轴为x=μ.(2)标准差为σ.(3)分布区间.利用对称性可求指定范围内的概率值;由μ,σ,分布区间的特征进行转化,使分布区间转化为3σ特殊区间,从而求出所求概率.注意只有在标准正态分布下对称轴才为x=0.
跟踪训练3 (1)(2024·佛山模拟)佛山被誉为“南国陶都”,拥有上千年的制陶史,佛山瓷砖享誉海内外.某企业瓷砖生产线上生产的瓷砖某项指标X~N(800,σ2),且P(X<801)=0.6,现从该生产线上随机抽取10片瓷砖,记Y表示800≤X<801的瓷砖片数,则E(Y)=_____.
因为X~N(800,σ2),均值μ=800,且P(X<801)=0.6,所以P(800≤X<801)=P(X<801)-P(X<800)=0.6-0.5=0.1,由题可得Y~B(10,0.1),所以E(Y)=10×0.1=1.
(2)(2023·唐山模拟)某种食盐的袋装质量X服从正态分布N(400,16),随机抽取10 000袋,则袋装质量在区间(396,408]的约有______袋.(质量单位:g)附:若随机变量X服从正态分布N(μ,σ2),则P(μ-σ≤X≤μ+σ)≈0.682 7,P(μ-2σ≤X≤μ+2σ)≈0.954 5,P(μ-3σ≤X≤μ+3σ)≈0.997 3.
由题意知,X~N(400,42),所以P(396≤X≤404)≈0.682 7,P(392≤X≤408)≈0.954 5,
所以袋装质量在区间(396,408]的约有10 000×0.818 6=8 186(袋).
因为随机变量X~B(2,p),
2.(2023·福建名校联盟大联考)甲、乙两选手进行羽毛球单打比赛,如果每局比赛甲获胜的概率为 ,乙获胜的概率为 ,采用三局两胜制,则甲以2∶1获胜的概率为
甲以2∶1获胜指前两局甲胜一局,第三局甲胜,
3.(2023·枣庄模拟)某地区有20 000名考生参加了高三第二次调研考试.经过数据分析,数学成绩X近似服从正态分布N(72,82),则数学成绩位于(80,88]的人数约为参考数据:P(μ-σ≤X≤μ+σ)≈0.682 7,P(μ-2σ≤X≤μ+2σ)≈0.954 5,P(μ-3σ≤X≤μ+3σ)≈0.997 B.2 718 C.6 346 D.9 545
由题意可知,μ=72,σ=8,P(80
4.已知5件产品中有2件次品,3件正品,检验员从中随机抽取2件进行检测,记取到的正品数为ξ,则均值E(ξ)为
ξ的所有可能取值为0,1,2,
5.32名业余棋手组队与甲、乙2名专业棋手进行车轮挑战赛,每名业余棋手随机选择一名专业棋手进行一盘比赛,每盘比赛结果相互独立,若获胜的业余棋手人数不少于10名,则业余棋手队获胜.已知每名业余棋手与甲比赛获胜的概率均为 ,每名业余棋手与乙比赛获胜的概率均为 ,若业余棋手队获胜,则选择与甲进行比赛的业余棋手人数至少为A.24 B.25 C.26 D.27
设选择与甲进行比赛且获胜的业余棋手人数为X,选择与乙进行比赛且获胜的业余棋手人数为Y;设选择与甲进行比赛的业余棋手人数为n,则选择与乙进行比赛的业余棋手人数为32-n.X所有可能的取值为0,1,2,…,n,
Y所有可能的取值为0,1,2,…,32-n,
所以获胜的业余棋手总人数的均值
6.(2024·赤峰模拟)某商场推出一种抽奖活动:盒子中装有有奖券和无奖券共10张券,客户从中任意抽取2张,若至少抽中1张有奖券,则该客户中奖,否则不中奖.客户甲每天都参加1次抽奖活动,一个月(30天)下来,发现自己共中奖11次,根据这个结果,估计盒子中的有奖券有A.1张 B.2张 C.3张 D.4张
设中奖的概率为p,30天中奖的天数为X,则X~B(30,p).若盒子中的有奖券有1张,
若盒子中的有奖券有2张,
若盒子中的有奖券有3张,
若盒子中的有奖券有4张,
根据题意盒子中的有奖券有2张,更有可能30天中奖11天.
二、多项选择题7.(2023·莆田模拟)“50米跑”是《国家学生体质健康标准》测试项目中的一项,某地区高三男生的“50米跑”测试成绩ξ(单位:秒)服从正态分布N(8,σ2),且P(ξ≤7)=0.2.从该地区高三男生的“50米跑”测试成绩中随机抽取3个,其中成绩在(7,9)的个数记为X,则A.P(7<ξ<9)=0.8 B.E(X)=1.8C.E(ξ)>E(5X) D.P(X≥1)>0.9
由正态分布的对称性可知P(ξ≤7)=P(ξ≥9)=0.2,故P(7<ξ<9)=1-0.2×2=0.6,故A错误;X~B(3,0.6),故E(X)=3×0.6=1.8,故B正确;E(ξ)=8,E(5X)=5E(X)=5×1.8=9,故E(ξ)
8.(2023·汕头模拟)一个袋子有10个大小相同的球,其中有4个红球,6个黑球,试验一:从中随机地有放回摸出3个球,记取到红球的个数为X1,均值和方差分别为E(X1),D(X1);试验二:从中随机地无放回摸出3个球,记取到红球的个数为X2,均值和方差分别为E(X2),D(X2),则A.E(X1)=E(X2) B.E(X1)>E(X2)C.D(X1)>D(X2) D.D(X1)
从中随机地无放回摸出3个球,记红球的个数为X2,则X2的可能取值是0,1,2,3,
所以随机变量X2的概率分布为
故E(X1)=E(X2),D(X1)>D(X2).
三、填空题9.(2023·石家庄模拟)某市中学举办了一次“亚运知识知多少”的知识竞赛.参赛选手从7道题(4道多选题,3道单选题)中随机抽题进行作答,若某选手先随机抽取2道题,再随机抽取1道题,则最后抽取到的题为多选题的概率为_____.
设先抽取2道题中多选题的题数为X,则X的可能取值为0,1,2,
所以最后抽取到的题为多选题的概率
10.(2023·唐山模拟)近年来,理财成为了一种趋势,老黄在今年买进某个理财产品.设该产品每个季度的收益率为X,且各个季度的收益之间互不影响,根据该产品的历史记录,可得P(X>0)=2P(X≤0).若老黄准备在持有该理财产品4个季度之后卖出.则至少有3个季度的收益为正值的概率为______.
因为P(X>0)=2P(X≤0),所以P(X>0)+P(X≤0)=3P(X≤0)=1,
11.(2024·南开模拟)一个盒子中装有5个电子产品,其中有3个一等品,2个二等品,从中每次抽取1个产品.若抽取后不再放回,则抽取三次,第三次才取得一等品的概率为_____;若抽取后再放回,共抽取10次,则平均取得一等品_____次.
令Ai为第i(i=1,2,3)次取得一等品,
所以平均取得一等品6次.
12.(2023·聊城模拟)某市统计高中生身体素质的状况,规定身体素质指标值不小于60就认为身体素质合格.现从全市随机抽取 100名高中生的身体素质指标值xi(i=1,2,3,…,100),经计算 =7 200, =100×(722+36).若该市高中生的身体素质指标值服从正态分布N(μ,σ2),则估计该市高中生身体素质的合格率为________.(用百分数作答,精确到0.1%)参考数据:若随机变量X服从正态分布N(μ,σ2),则P(μ-σ≤X≤μ+σ)≈0.682 7,P(μ-2σ≤X≤μ+2σ)≈0.954 5,P(μ-3σ≤X≤μ+3σ)≈0.997 3.
所以μ的估计值为μ=72,σ的估计值为σ=6.设该市高中生的身体素质指标值为X,由P(μ-2σ≤X≤μ+2σ)≈0.954 5,
得P(72-12≤X≤72+12)=P(60≤X≤84)≈0.954 5,P(X>84)=P(X>μ+2σ)=P(X<μ-2σ)
四、解答题13.某家具城举办了一次家具有奖促销活动,消费每超过1万元(含1万元),均可抽奖一次,抽奖方案有两种,顾客只能选择其中的一种.方案一:从装有10个形状与大小完全相同的小球(其中红球2个,白球1个,黑球7个)的抽奖盒中,一次性摸出3个球,其中奖规则为:若摸到2个红球和1个白球,则打5折;若摸出2个红球和1个黑球,则打7折;若摸出1个白球2个黑球,则打9折,其余情况不打折.方案二:从装有10个形状与大小完全相同的小球(其中红球2个,黑球8个)的抽奖盒中,有放回每次摸取1球,连摸3次,每摸到1次红球,立减2 000元.(1)若一位顾客消费了1万元,且选择抽奖方案一,试求该顾客享受7折优惠的概率;
选择方案一,若享受到7折优惠,则需要摸出2个红球和1个黑球,设顾客享受到7折优惠为事件A,
(2)若某顾客消费恰好满1万元,试从均值的角度比较该顾客选择哪一种抽奖方案更合算?
若选择方案一,设付款金额为X元,则X可能的取值为5 000,7 000,9 000,10 000,
若选择方案二,设摸到红球的个数为Y,付款金额为Z,则Z=10 000-2 000Y,
所以E(Z)=E(10 000-2 000Y)=10 000-2 000E(Y)=8 800(元),因为E(X)>E(Z),所以该顾客选择第二种抽奖方案更合算.
14.某市为了传承发展中华优秀传统文化,组织该市中学生进行了一次文化知识有奖竞赛,竞赛类奖励规则如下:得分在[70,80)内的学生获得三等奖,得分在[80,90)内的学生获得二等奖,得分在[90,100]内的学生获得一等奖,其他学生不得奖.为了解学生对相关知识的掌握情况,该市随机抽取100名学生的竞赛成绩,并以此为样本绘制了样本频率分布直方图,如图所示.
若该市所有参赛学生的成绩X近似服从正态分布N(μ,σ2),其中σ≈15,μ为样本平均数的估计值,利用所得正态分布模型解决以下问题:(1)若该市共有10 000名学生参加了竞赛,试估计参赛学生中成绩超过79分的学生人数(结果四舍五入到整数);
由样本频率分布直方图得,样本平均数的估计值μ=35×0.006×10+45×0.012×10+55×0.018×10+65×0.034×10+75×0.016×10+85×0.008×10+95×0.006×10=64,则所有参赛学生的成绩X近似服从正态分布N(64,152),
故参赛学生中成绩超过79分的学生人数为0.158 65×10 000≈1 587.
(2)若从所有参赛学生中(参赛学生数大于10 000)随机抽取3名学生进行访谈,设其中竞赛成绩在64分以上的学生数为ξ,求随机变量ξ的分布列和期望.
参考数据:若随机变量X服从正态分布N(μ,σ2),则P(μ-σ≤X≤μ+σ)≈0.682 7,P(μ-2σ≤X≤μ+2σ)≈0.954 5,P(μ-3σ≤X≤μ+3σ)≈0.997 3.
人教A版 (2019)选择性必修 第三册第七章 随机变量及其分布7.5 正态分布复习ppt课件: 这是一份人教A版 (2019)选择性必修 第三册<a href="/sx/tb_c4000360_t3/?tag_id=26" target="_blank">第七章 随机变量及其分布7.5 正态分布复习ppt课件</a>,共60页。PPT课件主要包含了落实主干知识,n重伯努利试验,X~Bnp,p1-p,np1-p,X~Nμσ2,x=μ,探究核心题型,所以X的分布列为,课时精练等内容,欢迎下载使用。
2025版高考数学一轮复习真题精练第十章概率与统计第39练二项分布超几何分布与正态分布课件: 这是一份2025版高考数学一轮复习真题精练第十章概率与统计第39练二项分布超几何分布与正态分布课件,共22页。
高考数学一轮复习第10章第7节二项分布、超几何分布与正态分布课件: 这是一份高考数学一轮复习第10章第7节二项分布、超几何分布与正态分布课件,共58页。PPT课件主要包含了伯努利试验,二项分布,正态密度曲线,√××,考点1考点2考点3等内容,欢迎下载使用。