邢台市第六中学2023-2024学年数学八上期末检测试题【含解析】
展开
这是一份邢台市第六中学2023-2024学年数学八上期末检测试题【含解析】,共19页。试卷主要包含了已知,那么=,下列说法正确的是,64的立方根是等内容,欢迎下载使用。
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每题4分,共48分)
1.计算的平方根为( )
A.B.C.4D.
2.如图,工人师傅做了一个长方形窗框ABCD,E,F,G,H分别是四条边上的中点, 为了稳固,需要在窗框上钉一根木条,这根木条不应钉在( )
A.G,H两点处B.A,C两点处C.E,G两点处D.B,F两点处
3.一列动车从A地开往B地,一列普通列车从B地开往A地,两车同时出发,设普通列车行驶的时间为x(小时),两车之间的距离为y(千米),如图中的折线表示y与x之间的函数关系.下列叙述错误的是( )
A.AB两地相距1000千米
B.两车出发后3小时相遇
C.动车的速度为
D.普通列车行驶t小时后,动车到达终点B地,此时普通列车还需行驶千米到达A地
4.如图,已知,,,,则下列结论错误的是( )
A.B.C.D.
5.若+|y+1|=0,则x+y的值为( )
A.-3B.3C.-1D.1
6.已知,那么=( )
A.6B.7C.9D.10
7.下列说法正确的是( )
A.形如的式子叫分式B.整式和分式统称有理式
C.当x≠3时,分式无意义D.分式与的最简公分母是a3b2
8.64的立方根是( )
A.4B.±4C.8D.±8
9.一个圆柱形容器的容积为,开始用一个小水管向容积内注水,水面高度达到容积的一半后,改用一根口径(直径)为小水管2倍的大水管注水,向容器中注满水的全过程共用时间.设小水管的注水速度,则下列方程正确的是( )
A.B.C.D.
10.如图,在中,点是内一点,且点到三边的距离相等.若,则的度数为( )
A.B.C.D.
11.点P(1,﹣2)关于y轴对称的点的坐标是( )
A.(1,2)B.(﹣1,2)C.(﹣1,﹣2)D.(﹣2,1)
12.下列各组数中,不能作为直角三角形三边长度的是…… ( )
A.2、3、4B.3、4、5C.6、8、10D.5、12、13
二、填空题(每题4分,共24分)
13.将函数的图象沿轴向下平移2个单位,所得图象对应的函数表达式为__________.
14.若多项式是一个完全平方式,则的值为_________.
15.观察下列各式:,,,……请你将发现的规律用含自然数n(n≥1)的等式表示出来__________________.
16.化简:=______.
17.一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两车相遇后都停下来休息,快车休息2个小时后,以原速的继续向甲行驶,慢车休息3小时后,接到紧急任务,以原速的返回甲地,结果快车比慢车早2.25小时到达甲地,两车之间的距离S(千米)与慢车出发的时间t(小时)的函数图象如图所示,则当快车到达甲地时,慢车距乙地______千米.
18.如果关于x的一元二次方程 没有实数根,那么m的取值范围是_____________.
三、解答题(共78分)
19.(8分)已知:如图,相交于点.若,求的长.
20.(8分)某体育文化用品商店购进篮球和排球共200个,进价和售价如下表全部销售完后共获利润2600元.
(1)求商店购进篮球和排球各多少个?
(2)王老师在元旦节这天到该体育文化用品商店为学校买篮球和排球各若干个(两种球都买了),商店在他的这笔交易中获利100元王老师有哪几种购买方案.
21.(8分)如图,在平面直角坐标系 中,直线 与 轴交于点 ,直线与轴交于点 ,与 相交于点.
(1)求点的坐标;
(2)在 轴上一点 ,若,求点的坐标;
(3)直线 上一点,平面内一点 ,若以 、 、 为顶点的三角形与全等,求点 的坐标.
22.(10分)甲乙两个仓库要向A、B两地运送水泥,已知甲库可调出100吨水泥,乙库可调出80吨水泥,A地需70吨水泥,B地需110吨水泥,两库到A,B两地的路程和运费如下表(表中运费栏“元/(吨、千米)”表示每吨水泥运送1千米所需人民币)(本题满分10分)
(1)设甲库运往A地水泥吨,求总运费(元)关于(吨)的函数关系式;
(2)当甲、乙两库各运往A、B两地多少吨水泥时,总运费最省?最省的总运费是多少?
23.(10分)如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的高,
(1)尺规作图:作△ABC的角平分线AE,交CD于点F(不写作法,保留作图痕迹);
(2)求证:△CEF为等腰三角形.
24.(10分)如图,已知线段AB,根据以下作图过程:
(1)分别以点A、点B为圆心,大于AB长的为半径作弧,两弧相交于C、D两点;
(2)过C、D两点作直线CD.
求证:直线CD是线段AB的垂直平分线.
25.(12分)计算:(﹣4)×(﹣)+2﹣1﹣(π﹣1)0+.
26.如图,在中,,.
(1)如图1,点在边上,,,求的面积.
(2)如图2,点在边上,过点作,,连结交于点,过点作,垂足为,连结.求证:.
参考答案
一、选择题(每题4分,共48分)
1、B
【解析】先根据算术平方根的定义求出的值,然后再根据平方根的定义即可求出结果.
【详解】∵=4,
又∵(±2)2=4,
∴4的平方根是±2,即的平方根±2,
故选B.
【点睛】
本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.
2、C
【分析】根据三角形的稳定性进行判断.
【详解】A选项:若钉在G、H两点处则构成了三角形,能固定窗框,故不符合题意;
B选项:若钉在A、C两点处则构成了三角形,能固定窗框,故不符合题意;
C选项:若钉在E、G两点处则构成了两个四边形,不能固定窗框,故符合题意;
D选项:若钉在B、F两点处则构成了三角形,能固定窗框,故不符合题意;
故选C.
【点睛】
考查三角形稳定性的实际应用.解题关键是利用了三角形的稳定性,判断是否稳定则看能否构成三角形.
3、C
【解析】可以用物理的思维来解决这道题.
【详解】未出发时,x=0,y=1000,所以两地相距1000千米,所以A选项正确;y=0时两车相遇,x=3,所以B选项正确;设动车速度为V1,普车速度为V2,则3(V1+ V2)=1000,所以C选项错误;D选项正确.
【点睛】
理解转折点的含义是解决这一类题的关键.
4、B
【分析】先根据三角形全等的判定定理证得,再根据三角形全等的性质、等腰三角形的性质可判断A、C选项,又由等腰三角形的性质、三角形的内角和定理可判断出D选项,从而可得出答案.
【详解】
,即
在和中,
,则A选项正确
(等边对等角),则C选项正确
,即
又
,即
,则D选项正确
虽然,但不能推出,则B选项错误
故选:B.
【点睛】
本题考查了三角形全等的判定定理与性质、等腰三角形的性质、三角形的内角和定理等知识点,根据已知条件,证出是解题关键.
5、D
【分析】先根据绝对值和算术平方根的非负性,求得x、y的值,最后求和即可.
【详解】解:∵+|y+1|=0
∴x-2=0,y+1=0
∴x=2,y=-1
∴x+y=2-1=1.
故答案为D.
【点睛】
本题主要考查了算术平方根和绝对值的非负性,根据非负性求得x、y的值是解答本题的关键.
6、B
【分析】已知等式左边通分并利用同分母分式的加法法则计算,整理后代入原式计算即可求出值.
【详解】解:∵,
∴=2,即a+b=2ab,
则原式== =7,
故选:B.
【点睛】
本题考查了分式加法的运算法则,整体代换思想的应用,掌握整体代换思想是解题的关键.
7、B
【解析】根据分式的定义,分式有意义的条件以及最简公分母进行解答.
【详解】A、形如且B中含有字母的式子叫分式,故本选项错误.
B、整式和分式统称有理式,故本选项正确.
C、当x≠3时,分式有意义,故本选项错误.
D、分式与的最简公分母是a2b,故本选项错误.
故选:B.
【点睛】
考查了最简公分母,分式的定义以及分式有意义的条件.因为1不能做除数,所以分式的分母不能为1.
8、A
【解析】试题分析:∵43=64,∴64的立方根是4,
故选A
考点:立方根.
9、B
【分析】根据大水管的直径是小水管的2倍,即可得出大水管的横截面积是小水管的4倍,从而得出大水管的注水速度为小水管的4倍,然后根据“小水管的注水时间+大水管的注水时间=t”列方程即可.
【详解】解:∵大水管的直径是小水管的2倍
∴大水管的横截面积是小水管的4倍
即大水管的注水速度为小水管的4倍
根据题意可得:
故选B.
【点睛】
此题考查的是分式方程的应用,掌握两个圆的面积之比等于直径比的平方和实际问题中的等量关系是解决此题的关键.
10、A
【分析】根据三角形内角和定理得到∠ABC+∠ACB=140°,根据角平分线的性质得到BO平分∠ABC,CO平分∠ACB,根据三角形内角和定理计算即可.
【详解】∵∠A=40°,
∴∠ABC+∠ACB=180°-40°=140°,
∵点O到△ABC三边的距离相等,
∴BO平分∠ABC,CO平分∠ACB,
∴∠OBC+∠OCB=×(∠ABC+∠ACB)=70°,
∴∠BOC=180°-70°=110°,
故选:A.
【点睛】
本题考查的是角平分线的性质,三角形内角和定理,掌握角的平分线上的点到角的两边的距离相等是解题的关键.
11、C
【解析】关于y轴对称的点,纵坐标相同,横坐标互为相反数,由此可得P(1,﹣2)关于y轴对称的点的坐标是(﹣1,﹣2),
故选C.
【点睛】本题考查了关于坐标轴对称的点的坐标,正确地记住关于坐标轴对称的点的坐标特征是关键.
关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数;
关于y轴对称的点的坐标特点:纵坐标不变,横坐标互为相反数.
12、A
【分析】根据勾股定理的逆定理,两边的平方和等于第三边的平方,即可得到答案.
【详解】解:A、,故A不能构成直角三角形;
B、,故B能构成直角三角形;
C、,故C能构成直角三角形;
D、,故D能构成直角三角形;
故选择:A.
【点睛】
本题考查了勾股定理的逆定理,解题的关键是熟记构成直角三角形的条件:两边的平方和等于第三边的平方.
二、填空题(每题4分,共24分)
13、
【解析】直接利用一次函数平移规律,“上加下减”进而得出即可.
【详解】将函数y=3x的图象沿y轴向下平移1个单位长度后,所得图象对应的函数关系式为:y=3x−1.
故答案为:y=3x−1.
【点睛】
此题主要考查了一次函数图象与几何变换,正确掌握平移规律是解题关键.
14、-5或1
【解析】试题解析:∵x2- (m-1)x+9=x2-(m-1)x+32,
∴(m-1)x=±2×3×x,
解得m=-5或1.
15、
【分析】观察分析可得,,,则将此规律用含自然数n(n≥1)的等式表示出来是
【详解】由分析可知,发现的规律用含自然数n(n≥1)的等式表示出来是
故答案为:
【点睛】
本题主要考查二次根式,找出题中的规律是解题的关键,观察各式,归纳总结得到一般性规律,写出用n表示的等式即可.
16、.
【分析】按照二次根式的性质化简二次根式即可.
【详解】解:.
故答案为:.
【点睛】
本题考查了二次根式的化简,熟悉相关性质是解题的关键.
17、620
【分析】设慢车的速度为a千米/时,快车的速度为b千米/时,根据题意可得5(a+b)=800,,联立求出a、b的值即可解答.
【详解】解:设慢车的速度为a千米/时,快车的速度为b千米/时,由图可知两车5个小时后相遇,且总路程为800千米,则5a+5b=800,即a+b=160,
再根据题意快车休息2个小时后,以原速的继续向甲行驶,则快车到达甲地的时间为:
,同理慢车回到甲地的时间为:,而快车比慢车早到2.25小时,但是由题意知快车为休息2小时出发而慢车是休息3小时,即实际慢车比快车晚出发1小时,即实际快车到甲地所花时间比慢车快2.25-1=1.25小时,
即:,化简得5a=3b,
联立得,解得,
所以两车相遇的时候距离乙地为=500千米,
快车到位甲地的时间为=2.5小时,
而慢车比快车多休息一个小时则此时慢车应该往甲地行驶了1.5小时,此时慢车往甲地行驶了=120千米,所以此时慢车距离乙地为500+120=620千米,
即快车到达甲地时,慢车距乙地620千米.
故答案为620.
【点睛】
本题主要考查的是一次函数的应用,根据图象得出相应的信息是解题的关键.
18、
【分析】由已知方程没有实数根,得到根的判别式小于0,列出关于m的不等式,求出不等式的解集即可得到m的范围.
【详解】解:∵方程x2-4x-m+1=0没有实数根,
∴△=16-4(-m+1)=4m+12<0,
解得:m<-1.
故答案为:m<-1
【点睛】
此题考查了一元二次方程根的判别式,根的判别式的值大于0,方程有两个不相等的实数根;根的判别式的值等于0,方程有两个相等的实数根;根的判别式的值小于0,方程没有实数根.
三、解答题(共78分)
19、
【分析】只要证明△ABC≌△DCB(SSS),即可证明∠OBC=∠OCB,即可得:OB=OC.
【详解】在△ABC和△DCB中
∴△ABC≌△DCB(SSS)
∴∠OBC=∠OCB
∴OB=OC
∵OC=2
∴OB=2
【点睛】
本题考查全等三角形的判定和性质、等腰三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题.
20、(1)商店购进篮球120个,排球80个;(2)王老师共有3种购买方案,方案1:购进篮球2个,排球7个;方案2:购进篮球4个,排球3个;方案3:购进篮球6个,排球1个.
【分析】(1)设商店购进篮球x个,排球y个,根据商店购进两种球共200个且销售利润为2600元,即可得出关于x,y的二元一次方程组,解之即可得出结论;
(2)设王老师购买篮球m个,排球n个,根据商店在他的这笔交易中获利100元,即可得出关于m,n的二元一次方程,结合m,n均为正整数,即可得出各购买方案.
【详解】解:(1)设商店购进篮球x个,排球y个,
依题意得:,
解得:,
答:商店购进篮球120个,排球80个;
(2)设王老师购买篮球m个,排球n个,
依题意得:(95﹣80)m+(60﹣50)n=100,
∴n=10﹣m,
∵m,n均为正整数,
∴m为偶数,
∴当m=2时,n=7;当m=4时,n=4;当m=6时,n=1,
答:王老师共有3种购买方案,方案1:购进篮球2个,排球7个;方案2:购进篮球4个,排球3个;方案3:购进篮球6个,排球1个.
【点睛】
本题考查了二元一次方程组的应用以及二元一次方程的应用,找准等量关系,正确列出二元一次方程组(或二元一次方程)是解题的关键.
21、(1);(2)点 坐标为 或;(3)
【分析】(1)令中y=0即可求得答案;
(2)点 在 的下方,过点D作DE∥AC交y轴于E,求出DE的解析式即可得到点E的坐标,利用对称性即可得到点E在AC上方时点E的坐标;
(3)求出直线与x轴的夹角度数,线段AD的长度,分三种情况求出点F的坐标.
【详解】(1)∵点 是与 轴的交点, 代入, ,
∴点 的坐标 ;
(2)当点 在 的下方,过点 作 ,交 轴于点 ,
设解析式为,过 ,
∴2+b=0,得b=-2,
∴,
∴,
点 在 上方,同理可得 ,
综上:点 坐标为 或
(3)直线与x轴的夹角是45,
∵A(-2,0),D(2,0),
∴AD=4,
作AF1⊥x轴,当A1F=AD=4时,△AF1P≌△ADP,此时点F1的坐标是(-2,4);
作PF2∥AD,当F2=AD=4时,△APF2≌△PAD,此时点F2的坐标是(-3,3);
作PF3⊥x轴,当PF3=AD=4时,△APF3≌△PAD,此时点F3的坐标是(1,-1),
综上,点F的坐标为 .
【点睛】
此题是一次函数的综合题,考查图象与坐标轴的交点坐标,利用面积求点坐标,利用三角形全等的性质求点的坐标,注意分情况讨论问题.
22、(1);(2)甲仓库运往A地70吨,甲仓库运往B地30吨,乙仓库运往A地0吨,乙仓库运往B地80吨时,运费最低,最低总运费是37100元.
【解析】试题分析:(1)由甲库运往A地水泥x吨,根据题意首先求得甲库运往B地水泥(100-x)吨,乙库运往A地水泥(70-x)吨,乙库运往B地水泥(10+x)吨,然后根据表格求得总运费y(元)关于x(吨)的函数关系式;
(2)根据(1)中的一次函数解析式的增减性,即可知当x=70时,总运费y最省,然后代入求解即可求得最省的总运费.
试题解析:(1)设甲库运往A地水泥x吨,则甲库运往B地水泥(100−x)吨,乙库运往A地水泥(70−x)吨,乙库运往B地水泥[80−(70−x)]=(10+x)吨,
根据题意得:y=12×20x+10×25(100−x)+12×15×(70−x)+8×20(10+x)=−30x+39200(0⩽x⩽70),
∴总运费y(元)关于x(吨)的函数关系式为:y=−30x+39200;
(2)∵一次函数y=−30x+39200中,k=−30
相关试卷
这是一份2023-2024学年河北省邢台市任泽区八年级(上)学期期末数学试题(含解析),共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023-2024学年河北省邢台市第八中学九上数学期末检测试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,函数与等内容,欢迎下载使用。
这是一份福建省厦门市第六中学2023-2024学年八上数学期末质量检测模拟试题含答案,共7页。