重庆巴蜀中学2023-2024学年数学八上期末教学质量检测模拟试题【含解析】
展开注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)
1.如图,△ABC的外角∠ACD的平分线CP与∠ABC平分线BP交于点P,若∠BPC=40°,则∠CAP的度数是( )
A.30°;B.40°;C.50°;D.60°.
2.下列各式:①3+3=6;②=1;③+==2;④=2;其中错误的有( ).
A.3个B.2个C.1个D.0个
3.如图,中,,点在边上,且,则的度数为( )
A.30°B.36°C.45°D.72°
4.如图,在中,,,平分,、分别是、上的动点,当最小时,的度数为( )
A.B.C.D.
5.如图,在中,,边的垂直平分线交于点.已知的周长为14,,则的值为( )
A.14B.6C.8D.20
6.如图,将一根长13厘米的筷子置于底面直径为6厘米,高为8厘米的圆柱形杯子中,则筷子露在杯子外面的长度至少为( )厘米.
A.1B.2C.3D.4
7.已知 ,则下列不等式中正确的是( )
A.B.C.D.
8.下列命题中为假命题的是( )
A.无限不循环小数是无理数B.代数式 的最小值是1
C.若,则D.有三个角和两条边分别相等的两个三角形一定全等
9.如图,已知△ABC≌△DAE,BC=2,DE=5,则CE的长为( ).
A.2B.2.5C.3D.3.5
10.如图,已知为的中点,若,则( )
A.5B.6C.7D.
11.满足下列条件的是直角三角形的是( )
A.,,B.,,
C.D.
12.一次函数的图象如图所示,则一次函数的图象与的图象的交点不可能在( )
A.第一象限B.第二象限C.第三象限D.第四象限
二、填空题(每题4分,共24分)
13.如图,在△ABC中,AB=5,AC=4,BC=3,按以下步骤作图:①以A为圆心,任意长为半径作弧,分别交AB、AC于点M、N;②分别以点M、N为圆心,以大于的长为半径作弧,两弧相交于点E;③作射线AE;④以同样的方法作射线BF,AE交BF于点O,连接OC,则OC=________.
14.星期天,小明上午8:00从家里出发,骑车到图书馆去借书,再骑车回到家.他离家的距离y(千米)与时间t(分钟)的关系如图所示,则上午8:45小明离家的距离是__千米.
15.某种病菌的形状为球形,直径约是,用科学记数法表示这个数为______.
16.已知实数m,n满足则=_____.
17.分解因式:x3y-xy=______.
18.分解因式:ax2-a=______.
三、解答题(共78分)
19.(8分)甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y(m)与挖掘时间x(h)之间的关系如图所示,请根据图象所提供的信息解答下列问题:
(1)乙队开挖到30m时,用了_____ h. 开挖6h时甲队比乙队多挖了____ m;
(2)请你求出:
①甲队在的时段内,y与x之间的函数关系式;
②乙队在的时段内,y与x之间的函数关系式;
(3)当x 为何值时,甲、 乙两队在 施工过程中所挖河渠的长度相等?
20.(8分)在一个含有两个字母的代数式中,如果任意交换这两个字母的位置.代数式的值不变,则称这个代数式为二元对称式,例如:,,,都是二元对称式,其中,叫做二元基本对称式.请根据以上材料解决下列问题:
(1)下列各代数式中,属于二元对称式的是______(填序号);
①;②;③;④.
(2)若,,将用含,的代数式表示,并判断所得的代数式是否为二元对称式;
(3)先阅读下面问题1的解决方法,再自行解决问题2:
问题1:已知,求的最小值.
分析:因为条件中左边的式子和求解中的式子都可以看成以,为元的对称式,即交换这两个元的位置,两个式子的值不变,也即这两个元在这两个式子中具有等价地位,所以当这两个元相等时,可取得最小值.
问题2,①已知,则的最大值是______;
②已知,则的最小值是______.
21.(8分)如图①所示是一个长为,宽为的长方形,沿图中虚线用剪刀均分成相等个小长方形.然后按图②的方式拼成一个正方形.
(1)你认为图②中的阴影部分的正方形的边长等于 ;
(2)请用两种不同的方法列代数式表示图②中阴影部分的面积:
方法① ;
方法② ;
(3)观察图②,写出,,这三个代数式之间的等量关系: ;
(4)根据(3)题中的等量关系,解决如下问题:若,,求的值?
22.(10分)如图,在平面直角坐标系中,A(−1,5),B(−1,0),C(−4,3),
(1)在图中作出△ABC关于y轴对称图形△A1B1C1;
(2)写出点A1,B1,C1的坐标;
(3)求出△ABC的面积.
23.(10分)如图,已知△ABC的面积为16,BC=8,现将△ABC沿直线向右平移a(a<8)个单位到△DEF的位置.
(1)求△ABC的BC边上的高.
(2)连结AE、AD,设AB=5
①求线段DF的长.
②当△ADE是等腰三角形时,求a的值.
24.(10分)如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米.一只小鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行多少米?
25.(12分)广州市花都区某校八年级有180名同学参加地震应急演练,对比发现:经专家指导后,平均每秒撤离的人数是专家指导前的3倍,这180名同学全部撤离的时间比专家指导前快2分钟. 求专家指导前平均每秒撤离的人数.
26.如图,在平面直角坐标系中点A的坐标为(4,-3),且0A=5,在x轴上确定一点P,使△AOP是以OA为腰的等腰三角形.
(1)写出一个符合题意的点P的坐标 ;
(2)请在图中画出所有符合条件的△AOP.
参考答案
一、选择题(每题4分,共48分)
1、C
【解析】过点P作PE⊥BD于点E,PF⊥BA于点F,PH⊥AC于点H,
∵CP平分∠ACD,BP平分∠ABC,
∴PE=PH,PE=PF,∠PCD=∠ACD,∠PBC=∠ABC,
∴PH=PF,
∴点P在∠CAF的角平分线上,
∴AP平分∠FAC,
∴∠CAP=∠CAF.
∵∠PCD=∠BPC+∠PBC,
∴∠ACD=2∠BPC+2∠PBC,
又∵∠ACD=∠ABC+∠BAC,∠ABC=2∠PBC,∠BPC=40°,
∴∠ABC+∠BAC=∠ABC+80°,
∴∠BAC=80°,
∴∠CAF=180°-80°=100°,
∴∠CAP=100°×=50°.
故选C.
点睛:过点P向△ABC三边所在直线作出垂线段,这样综合应用“角平分线的性质与判定”及“三角形外角的性质”即可结合已知条件求得∠CAP的度数.
2、A
【解析】3+3=6,错误,无法计算;② =1,错误;③+==2不能计算;④=2,正确.
故选A.
3、D
【解析】利用等边对等角得到三对角相等,设∠A=∠ABD=x,表示出∠BDC与∠C,列出关于x的方程,求出方程的解得到x的值,即可确定出∠C的度数.
【详解】解:∵AB=AC,
∴∠ABC=∠C,
∵BD=BC=AD,
∴∠A=∠ABD,∠C=∠BDC,
设∠A=∠ABD=x,
则∠BDC=2x,∠C=,
可得 ,
解得:x=36°,
则,
故选:D.
【点睛】
此题考查了等腰三角形的性质,以及三角形内角和定理,熟练掌握等腰三角形的性质是解本题的关键.
4、B
【分析】在AC上截取AE=AN,先证明△AME≌△AMN(SAS),推出ME=MN.当B、M、E共线,BE⊥AC时,BM+ME最小,可求出∠NME的度数,从而求出∠BMN的度数.
【详解】如图,在AC上截取AE=AN,
∵∠BAC的平分线交BC于点D,
∴∠EAM=∠NAM,
在△AME与△AMN中,
,
∴△AME≌△AMN(SAS),
∴ME=MN.
∴BM+MN=BM+ME,
当B、M、E共线,BE⊥AC时,BM+ME最小,
∴MN⊥AB
∵∠BAC=68°
∴∠NME=360°-∠BAC-∠MEA-∠MNA=360°-68°-90°-90°=112°,
∴∠BMN=180°-112°=68°.
故选:B.
【点睛】
本题考查了轴对称-最短问题,解题的关键是能够通过构造全等三角形,把BM+MN进行转化,利用垂线段最短解决问题.
5、C
【分析】根据线段垂直平分线的性质,可知,然后根据的周长为,可得,再由可得,即.
【详解】解:边垂直平分线
又的周长=
,
即.
故选C
【点睛】
此题主要考查了线段的垂直平分线的性质,解题时,先利用线段的垂直平分线求出,然后根据三角形的周长互相代换,即可其解.
6、C
【分析】首先应根据勾股定理求得圆柱形水杯的最大线段的长度,即=10,故筷子露在杯子外面的长度至少为多少可求出.
【详解】解:如图所示,筷子,圆柱的高,圆柱的直径正好构成直角三角形,
∴勾股定理求得圆柱形水杯的最大线段的长度,即=10(cm),
∴筷子露在杯子外面的长度至少为13﹣10=3cm,
故选C.
【点睛】
本题考查勾股定理的应用,解题的关键是掌握勾股定理的应用.
7、D
【分析】根据不等式的性质解答即可.
【详解】A. -2a<-2b,故该项错误;
B. ,故该项错误;
C.2-a<2-b,故该项错误;
D. 正确,
故选:D.
【点睛】
此题考查不等式的性质,熟记性质并熟练解题是关键.
8、D
【分析】根据无理数的定义、二次根式有意义的条件、不等式的基本性质和全等三角形的判定定理逐一分析即可.
【详解】解:A. 无限不循环小数是无理数,故本选项是真命题;
B. 代数式 中
根据二次根式有意义的条件可得
解得:
∵和的值都随x的增大而增大
∴当x=2时,的值最小,最小值是1,故本选项是真命题;
C. 若,将不等式的两边同时乘a2,则,故本选项是真命题;
D. 有三个角和两条边分别相等的两个三角形不一定全等(两边必须是对应边),故本选项是假命题;
故选D.
【点睛】
此题考查的是真假命题的判断,掌握无理数的定义、二次根式有意义的条件、不等式的基本性质和全等三角形的判定定理是解决此题的关键.
9、C
【分析】依据全等三角形的性质及等量代换即可求出.
【详解】解:∵△ABC≌△DAE,
∴AE=BC=2,AC=DE=5,
∴CE=AC−AE=3.
故选:C.
【点睛】
找到全等三角形的对应边是关键.
10、A
【分析】根据平行的性质求得内错角相等,根据ASA得出△ADE≌△CFE,从而得出AD=CF,已知AB,CF的长,即可得出BD的长.
【详解】∵AB∥FC,
∴∠ADE=∠CFE,
∵E是DF的中点,
∴DE=EF,
在△ADE与△CFE中,
,
∴△ADE≌△CFE(ASA),
∴AD=CF=7cm,
∴BD=AB-AD=12-7=5(cm).
故选:A.
【点睛】
本题考查了全等三角形的判定和性质,平行线的性质,熟练掌握全等三角形的判定定理是解题的关键.
11、C
【分析】要判断一个角是不是直角,先要知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.
【详解】A.若BC=4,AC=5,AB=6,则BC2+AC2≠AB2,故△ABC不是直角三角形;
B.若,,,则AC2+AB2≠CB2,故△ABC不是直角三角形;
C.若BC:AC:AB=3:4:5,则BC2+AC2=AB2,故△ABC是直角三角形;
D.若∠A:∠B:∠C=3:4:5,则∠C<90°,故△ABC不是直角三角形;
故答案为:C.
【点睛】
本题主要考查了勾股定理的逆定理,如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.
12、D
【分析】根据一次函数y1=x+4的图象经过的象限进行判定即可.
【详解】解:由图可知,一次函数y1=x+4的图象经过第一、二、三象限,
根据交点一定在函数图象上,两函数的图象的交点不可能在第四象限.
故选:D.
【点睛】
本题考查了两直线的交点问题,确定出一次函数y1=x+4的图象经过的象限是解题的关键.
二、填空题(每题4分,共24分)
13、.
【解析】直接利用勾股定理的逆定理结合三角形内心的性质进而得出答案.
【详解】过点O作OD⊥BC,OG⊥AC,垂足分别为D,G,
由题意可得:O是△ACB的内心,
∵AB=5,AC=4,BC=3,
∴BC2+AC2=AB2,
∴△ABC是直角三角形,
∴∠ACB=90°,
∴四边形OGCD是正方形,
∴DO=OG==1,
∴CO=.
故答案为.
【点睛】
此题主要考查了基本作图以及三角形的内心,正确得出OD的长是解题关键.
14、1.1.
【分析】首先设当40≤t≤60时,距离y(千米)与时间t(分钟)的函数关系为y=kt+b,然后再把(40,2)(60,0)代入可得关于k、b的方程组,解出k、b的值,进而可得函数解析式,再把t=41代入即可.
【详解】设当40≤t≤60时,距离y(千米)与时间t(分钟)的函数关系为y=kt+b.
∵图象经过(40,2)(60,0),
∴,解得:,
∴y与t的函数关系式为y=﹣,
当t=41时,y=﹣×41+6=1.1.
故答案为1.1.
【点睛】
本题主要考查了一次函数的应用,关键是正确理解题意,掌握待定系数法求出函数解析式.
15、
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】0.000000102的小数点向右移动7位得到1.02,
所以0.000000102用科学记数法表示为,
故答案为.
【点睛】
本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
16、
【分析】根据完全平方公式进行变形,得到可得到结果,再开方即可得到最终结果.
【详解】,
代入可得,所以
故答案为:.
【点睛】
考查利用完全平方公式求代数式的值,学生熟练掌握完全平方公式是本题解题的关键,并利用开平方求得最后的结果.
17、
【详解】
原式=xy(x2﹣1)=xy(x+1)(x﹣1),
故答案为:xy(x+1)(x﹣1)
18、
【解析】先提公因式,再套用平方差公式.
【详解】ax2-a=a(x2-1)=
故答案为:
【点睛】
掌握因式分解的一般方法:提公因式法,公式法.
三、解答题(共78分)
19、(1)2,10;(2)①y=10x,②y=5x+20;(3)x为4h时,甲、乙两队所挖的河渠长度相等.
【解析】(1)此题只要认真读图,可从中找到甲、乙两队各组数据;
(2)根据图中的信息利用待定系数法即可确定函数关系式;
(3)利用(2)中的函数关系式可以解决问题.
【详解】解:(1)依题意得乙队开挖到30m时,用了2h,
开挖6h时甲队比乙队多挖了60-50=10m;
(2)①设甲队在0≤x≤6的时段内y与x之间的函数关系式y=k1x,
由图可知,函数图象过点(6,60),
∴6k1=60,
解得k1=10,
∴y=10x,
②设乙队在2≤x≤6的时段内y与x之间的函数关系式为y=k2x+b,
由图可知,函数图象过点(2,30)、(6,50),
∴ ,
解得 ,
∴y=5x+20;
(3)由题意,得10x=5x+20,
解得x=4(h).
∴当x为4h时,甲、乙两队所挖的河渠长度相等.
故答案为:(1)2,10;(2)①y=10x,②y=5x+20;(3)x为4h时,甲、乙两队所挖的河渠长度相等.
【点睛】
本题考查学生对函数图象掌握情况及利用待定系数法求一次函数关系式,理解题意是解题的关键.
20、(1)②④(2),不是;(3)①;②1
【分析】(1)根据题中二元对称式的定义进行判断即可;
(2)将进行变形,然后将,,整体代入即可得到代数式,然后判断即可;
(3)①根据问题1的解决方法,发现当两个代数式都为二元的对称式时,两个元相等时,另一个代数式取最值,然后即可得到答案;②令,将式子进行换元,得到两个二元对称式,即可解决问题.
【详解】(1),①不是二元对称式,
,②是二元对称式,
,③不是二元对称式,
,④是二元对称式,
故答案为:②④;
(2)∵,.
∴,
∴.
当,交换位置时,代数式的值改变了,
∴不是二元对称式.
(3)①
当时,即当时,有最大值,最大值为.
②令,
则,,
∴当时,取最小值,即取到最小值,
∴时,取到最小值,
所以最小值为1.
【点睛】
本题考查了代数式的内容,正确理解题意,掌握换元法是解题的关键.
21、(1)m﹣n;(2)(m﹣n)2;(m+n)2﹣4mn;(3)(m﹣n)2=(m+n)2﹣4mn;(4)1.
【分析】(1)平均分成后,每个小长方形的长为m,宽为n.由图可知阴影正方形的边长=小长方形的长-宽;
(2)第一种方法为:大正方形面积-4个小长方形面积,第二种表示方法为:阴影部分为小正方形的面积;
(3)根据(2)中表示的结果可求解;
(4)利用(a-b)2=(a+b)2-4ab可求解.
【详解】解:(1)图②中的阴影部分的正方形的边长等于m﹣n;
故答案为:m﹣n;
(2)图②中阴影部分的面积:(m﹣n)2;
图②中阴影部分的面积:(m+n)2﹣4mn;
故答案为:(m﹣n)2;(m+n)2﹣4mn;
(3)根据图②,可得(m+n)2,(m﹣n)2,mn这三个代数式之间的等量关系为:
(m﹣n)2=(m+n)2﹣4mn;
(4)∵a﹣b=6,ab=5,
∴(a+b)2=(a﹣b)2+4ab=62+4×5=36+20=1.
【点睛】
本题考查了完全平方那个公式的几何背景,解决问题的关键是读懂题意,找到所求的量的等量关系.
22、(1)见解析;(2)A1(1,5),B1(1,0),C1(4,3);(3)
【分析】(1)根据轴对称的性质找出A、B、C点的对称点,然后连线即可;
(2)利用关于y轴对称点的坐标特征:横坐标互为相反数,纵坐标相同即可求解;
(3)利用图象上的点的坐标得出△ABC的底与高即可求出面积.
【详解】解:(1)如图所示:
(2)由各点在坐标系内的位置可知,A1(1,5),B1(1,0),C1(4,3);
(3)由图可知:.
【点睛】
此题主要考查了三角形面积求法和关于y轴对称图形画法,正确找出对应点坐标是解题关键.
23、(1)4;(2)①;②或5或6
【分析】(1)根据三角形的面积公式即可求出结论;
(2)①作AG⊥BC,垂足为G,根据勾股定理即可求出BG,再根据勾股定理即可求出AC,最后根据平移的性质即可求出结论;
②根据等腰三角形腰的情况分类讨论,根据平移的性质、勾股定理和等腰三角形的性质分别求出结论即可.
【详解】解:(1)△ABC的BC边上的高为16×2÷8=4
(2)①作AG⊥BC,垂足为G,由(1)知AG=4
在Rt△AGB中,AB=5,AG=4
3
在Rt△AGC中,AG=4,GC=BC-BG=5
由平移可得DF=AC=
②若△ADE是等腰三角形,可分以下情况
Ⅰ、当AD=AE时,由题可得:AD=BE=a=AE
在Rt△AGE中,EG=a-3
根据勾股定理可得:
解得:
Ⅱ、当AD=DE时,由平移可得DE=AB=5
∴a=AD=DE=5
Ⅲ、当DE=AE时,则AB=AE
∵AG⊥BC
∴BE=2BG=6
即a=6
综上可得:当a=或5或6时,△ADE是等腰三角形
【点睛】
此题考查的是三角形的面积公式、平移的性质、勾股定理、等腰三角形的性质,掌握三角形的面积公式、平移的性质、勾股定理、等腰三角形的性质和分类讨论的数学思想是解决此题的关键.
24、10
【分析】试题分析:由题意可构建直角三角形求出AC的长,过C点作CE⊥AB于E,则四边形EBDC是矩形.BE=CD,AE可求,CE=BD,在Rt△AEC中,由两条直角边求出AC长.
试题解析:如图,设大树高为AB=10m,小树高为CD=4m,过C点作CE⊥AB于E,则四边形EBDC是矩形.∴EB=CD=4m,EC=8m.AE=AB-EB=10-4=6m.连接AC,在Rt△AEC中,.
考点:1.勾股定理的运用;2.矩形性质.
【详解】请在此输入详解!
25、1人
【分析】设专家指导前平均每秒撤离的人数为x人,根据题意列出分式方程,解分式方程并检验即可.
【详解】设专家指导前平均每秒撤离的人数为x人,根据题意有
解得
将检验,是原分式方程的解
答:专家指导前平均每秒撤离的人数为1人
【点睛】
本题主要考查分式方程的应用,读懂题意,列出分式方程是解题的关键.
26、(1)点P的坐标为或或,写出其中一个即可;(2)见解析
【分析】(1)以点O为圆心,OA为半径画圆,与x轴的交点P1、P2即为所求;以点A为圆心,OA为半径画圆,与x轴的交点P3即为所求;
(2)连接AP1、AP2、AP3 、OP1、OP2、OP3即可.
【详解】(1)如图,点P的坐标为或或.
(2)如图所示,即为所求.
【点睛】
本题考查了尺规作图的问题,掌握等腰三角形的性质以及尺规作图的方法是解题的关键.
重庆八中学、九十五中学等学校2023-2024学年数学八上期末达标检测模拟试题【含解析】: 这是一份重庆八中学、九十五中学等学校2023-2024学年数学八上期末达标检测模拟试题【含解析】,共20页。试卷主要包含了考生必须保证答题卡的整洁,下列命题是真命题的有,下列描述不能确定具体位置的是,在、、、、中分式的个数有.等内容,欢迎下载使用。
重庆巴蜀中学2023-2024学年九上数学期末监测模拟试题含答案: 这是一份重庆巴蜀中学2023-2024学年九上数学期末监测模拟试题含答案,共7页。
2023-2024学年重庆巴蜀中学八年级数学第一学期期末教学质量检测模拟试题含答案: 这是一份2023-2024学年重庆巴蜀中学八年级数学第一学期期末教学质量检测模拟试题含答案,共7页。试卷主要包含了如图,下列各式中正确的是,选择计算等内容,欢迎下载使用。