重庆市江津第四中学2023年数学八年级第一学期期末考试模拟试题【含解析】
展开
这是一份重庆市江津第四中学2023年数学八年级第一学期期末考试模拟试题【含解析】,共18页。试卷主要包含了下列各组条件中能判定的是,下列语句是命题的是等内容,欢迎下载使用。
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每小题3分,共30分)
1.将一副直角三角板如图放置,使两直角边重合,则∠α的度数为( )
A.75°B.105°C.135°D.165°
2.如下书写的四个汉字,其中为轴对称图形的是( )
A.B.C.D.
3.如果从某个多边形的一个顶点出发,可以作2条对角线,则这个多边形的内角和是( )
A.360°B.540°C.720°D.900°
4.下列各组条件中能判定的是( )
A.,,B.,,
C.,,D.,,
5.一个装有进水管和出水管的容器,开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,每分钟的进水量和出水量是两个常数. 容器内的水量y(单位:升)与时间x(单位:分)之间的关系如图,则6分钟时容器内的水量(单位:升)为( )
A.22B.22.5C.23D.25
6.如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB上的动点,△PMN周长的最小值是5cm,则∠AOB的度数是( ).
A.B.C.D.
7.下列语句是命题的是( )
(1)两点之间,线段最短;
(2)如果两个角的和是90度,那么这两个角互余.
(3)请画出两条互相平行的直线;
(4)过直线外一点作已知直线的垂线;
A.(1)(2)B.(3)(4)C.(2)(3)D.(1)(4)
8.已知关于的分式方程无解,则的值为 ( )
A.B.C.D.
9.如图,已知 BF=CE,∠B=∠E,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是( )
A.AB=DEB.AC∥DFC.∠A=∠DD.AC=DF
10.如图在△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,BE与CD相交于点F,BF=2CE,H是BC边的中点,连接DH与BE相交于点G,下列结论中: ①∠A=67.5°;②DF=AD;③BE=2BG;④DH⊥BC 其中正确的个数是( )
A.1个B.2个C.3个D.4个
二、填空题(每小题3分,共24分)
11.的绝对值是_____.
12.如图,在△ABC中,∠A=70°.按下列步骤作图:①分别以点B,C为圆心,适当长为半径画弧,分别交BA,BC,CA,CB于点D,E,F,G;②分别以点D,E为圆心,大于DE为半径画弧,两弧交于点M;③分别以点F,G为圆心,大于FG为半径画弧,两弧交于点N;④作射线BM交射线CN于点O.则∠BOC的度数是_____.
13.如图在3×3的正方形网格中有四个格点A.B.C.D,以其中一点为原点,网格线所在直线为坐标轴建立直角坐标系,使其余三个点中存在两个点关于一条坐标轴对称,则原点是____点.
14.若实数、满足,则________.
15.如图,在中,,AD平分交BC于点D,若,,则的面积为______.
16.在函数中,自变量x的取值范围是___.
17.已知是完全平方式,则的值为_________.
18.若与点关于轴对称,则的值是___________;
三、解答题(共66分)
19.(10分)阅读下面材料,并解答问题.
材料:将分式拆分成一个整式与一个分式(分子为整数)的和的形式.
解析:
由分母为,可设
则
对应任意x,上述等式均成立,,,.
.
这样,分式被拆分成了一个整式与一个分式的和.
解答:
(1)将分式拆分成一个整式与一个分式(分子为整数)的和的形式.
(2)当时,直接写出________,的最小值为________.
20.(6分)如图,中,,,点、、分别在、、上,且,.求的度数.
21.(6分)先化简,再求值:,其中 a 满足.
22.(8分)先观察下列等式,再回答问题:
①;
②;
③;
(1)根据上面三个等式,请猜想的结果(直接写出结果)
(2)根据上述规律,解答问题:
设,求不超过的最大整数是多少?
23.(8分)为营造书香家庭,周末小亮和姐姐一起从家出发去图书馆借书,走了6分钟忘带借书证,小亮立即骑路边共享单车返回家中取借书证,姐姐以原来的速度继续向前行走,小亮取到借书证后骑单车原路原速前往图书馆,小亮追上姐姐后用单车带着姐姐一起前往图书馆.已知单车的速度是步行速度的3倍,如图是小亮和姐姐距家的路程y(米)与出发的时间x(分钟)的函数图象,根据图象解答下列问题:
⑴小亮在家停留了 分钟;
⑵求小亮骑单车从家出发去图书馆时距家的路程y(米)与出发时间x(分钟)之间的函数关系式;
⑶若小亮和姐姐到图书馆的实际时间为m分钟,原计划步行到达图书馆的时间为n分钟,则n-m= 分钟.
24.(8分)已知,,求.
25.(10分)已知,,求和的值.
26.(10分)观察下列算式:
①1×3-22=3-4=-1
②2×4-32=8-9=-1
③3×5-42=15-16=-1
④
(1)请按以上规律写出第4个算式;
(2)写出第n个算式;
(3)你认为(2)中的式子一定成立吗?请证明.
参考答案
一、选择题(每小题3分,共30分)
1、D
【分析】根据三角形的一个外角等于与它不相邻的两个内角的和求出∠1,再求出∠α即可.
【详解】由三角形的外角性质得,∠1=45°+90°=135°,∠α=∠1+30°=135°+30°=165°.故选D.
【点睛】
本题考查三角形的外角性质,解题的关键是掌握三角形的外角性质.
2、B
【分析】轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.
【详解】解:根据轴对称图形的定义可得只有“善”符合条件,故选B.
【点睛】
本题考查轴对称图形的定义,本题属于基础应用题,只需学生熟练掌握轴对称图形的定义,即可完成.
3、B
【分析】根据从多边形的一个顶点可以作对角线的条数公式求出边数,然后根据多边形的内角和公式列式进行计算即可得解.
【详解】∵多边形从一个顶点出发可引出2条对角线,
∴,
解得:,
∴内角和.
故选:B.
【点睛】
本题考查了多边形的内角和公式,多边形的对角线的公式,求出多边形的边数是解题的关键.
4、D
【分析】根据三角形全等的判定判断即可.
【详解】由题意画出图形:
A选项已知两组对应边和一组对应角,但这组角不是夹角,故不能判定两三角形全等;
B选项已知两组对应边和一组边,但这组边不是对应边,故不能判定两三角形全等;
C选项已知三组对应角,不能判定两三角形全等;
D选项已知三组对应边,可以判定两三角形全等;
故选D.
【点睛】
本题考查三角形全等的判定,关键在于熟练掌握判定条件.
5、B
【分析】由题意结合图象,设后8分钟的函数解析式为y=kx+b,将x=4时,y=20;x=12时,y=30代入求得k、b值,可得函数解析式,再将x=6代入求得对应的y值即可.
【详解】设当4≤x≤12时函数的解析式为y=kx+b(k≠0),
由图象,将x=4时,y=20;x=12时,y=30代入,得:
,解得:,
∴,
当x=6时,,
故选:B.
【点睛】
本题考查了一次函数的应用,解答的关键是从图象上获取相关联的量,会用待定系数法求函数的解析式,特别要注意分段函数自变量的取值范围的划分.
6、B
【解析】试题分析:作点P关于OA对称的点P3,作点P关于OB对称的点P3,连接P3P3,与OA交于点M,与OB交于点N,此时△PMN的周长最小.由线段垂直平分线性质可得出△PMN的周长就是P3P3的长,∵OP=3,∴OP3=OP3=OP=3.又∵P3P3=3,,∴OP3=OP3=P3P3,∴△OP3P3是等边三角形, ∴∠P3OP3=60°,即3(∠AOP+∠BOP)=60°,∠AOP+∠BOP=30°,即∠AOB=30°,故选B.
考点:3.线段垂直平分线性质;3.轴对称作图.
7、A
【分析】判断一件事情的语句叫命题,命题都由题设和结论两部分组成,依此对四个小题进行逐一分析即可;
【详解】(1)两点之间,线段最短符合命题定义,正确;
(2)如果两个角的和是90度,那么这两个角互余,符合命题定义,正确.
(3)请画出两条互相平行的直线只是做了陈述,不是命题,错误;
(4)过直线外一点作已知直线的垂线没有做出判断,不是命题,错误,
故选:A.
【点睛】
本题考查了命题的概念:一般的,在数学中我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.注意命题是一个能够判断真假的陈述句.
8、A
【分析】去分母,把分式方程化为整式方程,把增根代入整式方程可得答案.
【详解】解: ,
方程的增根是
把代入得:
故选A.
【点睛】
本题考查分式方程的增根问题,掌握把分式方程的增根代入去分母后的整式方程求未知系数的值是解题的关键.
9、D
【分析】根据全等三角形的判定定理分别进行分析即可.
【详解】A.∵BF=CE,∴BF-CF=CE-CF,即BC=EF.
∵∠B=∠E,AB=DE,∴∆ABC≌∆DEF(SAS),故A不符合题意.
B.∵AC∥DF,∴∠ACE=∠DFC,∴∠ACB=∠DFE(等角的补角相等)
∵BF=CE,∠B=∠E,∴BF-CF=CE-CF,即BC=EF,∴∆ABC≌∆DEF(ASA),故B不符合题意.
C.∵BF=CE,∴BF-CF=CE-CF,即BC=EF.
而∠A=∠D,∠B=∠E,∴∆ABC≌∆DEF(AAS),故C不符合题意.
D.∵BF=CE,∴BF-CF=CE-CF,即BC=EF,而AC=DF,∠B=∠E,三角形中,有两边及其中一边的对角对应相等,不能判断两个三角形全等,故D符合题意.
故选D.
【点睛】
本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
10、C
【分析】根据已知条件得到△BCD是等腰直角三角形,由等腰直角三角形的性质得到BD=CD,由BE平分∠ABC,得到∠ABE=22.5°,根据三角形的内角和得到∠A=67.5°;故①正确;根据余角得到性质得到∠DBF=∠ACD,根据全等三角形的性质得到AD=DF,故②正确;根据BE平分∠ABC,且BE⊥AC于E,得到∠ABE=∠CBE,∠AEB=∠CEB=90°,根据全等三角形的性质得到AE=CE=AC,求得BE⊥AC,由于△BCD是等腰直角三角形,H是BC边的中点,得到DH⊥BC,故④正确;推出DH不平行于AC,于是得到BE≠2BG,故③错误.
【详解】解:∵∠ABC=45°,CD⊥AB于D,
∴△BCD是等腰直角三角形,
∴BD=CD,
∵BE平分∠ABC,
∴∠ABE=22.5°,
∴∠A=67.5°;故①正确;
∵CD⊥AB于D,BE⊥AC于E,
∴∠DBF+∠A=90°,∠ACD+∠A=90°,
∴∠DBF=∠ACD,
在△BDF与△CDA中,
∴△BDF≌△CDA(ASA),
∴AD=DF,故②正确;
∵BE平分∠ABC,且BE⊥AC于E,
∴∠ABE=∠CBE,∠AEB=∠CEB=90°,
∴在△ABE与△CBE中,
∴△ABE≌△CBE(ASA),
∴AE=CE=AC,
∵△BCD是等腰直角三角形,H是BC边的中点,
∴DH⊥BC,故④正确;
∴DH不平行于AC,
∵BH=CH,
∴BG≠EG;
∴BE≠2BG,故③错误.
故选:C.
【点睛】
本题考查了等腰直角三角形的判定与性质,角平分线的性质,全等三角形的判定与性质,仔细分析图形并熟练掌握各性质是解题的关键.
二、填空题(每小题3分,共24分)
11、
【解析】根据绝对值都是非负数,可得一个数的绝对值
【详解】∵,
∴的绝对值是3﹣,
故答案为:3﹣.
【点睛】
本题考查了绝对值的化简,一个正数的绝对值等于它的本身,零的绝对值还是零,一个负数的绝对值等于它的相反数.
12、125°
【分析】根据题意可知,尺规作图所作的是角平分线,再根据三角形内角和的性质问题可解.
【详解】解:∵∠A=70°,
∴∠ABC+∠ACB=180°﹣70°=110°,
由作图可知OB平分∠ABC,CO平分∠ACB,
∴∠OBC+∠OCB=∠ABC+∠ACB=(∠ABC+∠ACB)=55°,
∴∠BOC=180°﹣(∠OBC+∠OCB)=125°,
故答案为125°.
【点睛】
本题考查作图-基本作图,角平分线性质和三角形内角和的性质,解题的关键是熟练掌握基本知识.
13、B点
【解析】以每个点为原点,确定其余三个点的坐标,找出满足条件的点,得到答案.
【详解】解:当以点B为原点时,如图,
A(-1,-1),C(1,-1),
则点A和点C关于y轴对称,符合条件.
故答案为:B点.
【点睛】
本题考查关于x轴、y轴对称的点的坐标和坐标确定位置,掌握平面直角坐标系内点的坐标的确定方法和对称的性质是解题的关键.
14、1
【分析】先根据非负数的性质求出、的值,再求出的值即可.
【详解】解:∵,∴,解得,,
∴.故答案为1.
【点睛】
本题考查的是非负数的性质,属于基础题型,熟知非负数的性质:几个非负数的和为0时,其中每一项必为0是解答此题的关键.
15、1
【分析】作DH⊥AB于H,如图,根据角平分线的性质得到DH=DC=2,然后根据三角形面积公式计算.
【详解】解:作DH⊥AB于H,如图,
∵AD平分∠BAC,DH⊥AB,DC⊥AC,
∴DH=DC=2,
∴△ABD的面积=
故答案为1.
【点睛】
本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.
16、
【详解】求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数可知,要使在实数范围内有意义,必须.
17、
【分析】根据完全平方公式:,即可求出m的值
【详解】解:∵是完全平方式,
∴
∴
故答案为:
【点睛】
此题考查的是根据完全平方式,求一次项中的参数,掌握两个完全平方公式的特征是解决此题的关键.
18、1
【分析】根据关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得m、n的值,代入计算可得答案.
【详解】由点与点的坐标关于y轴对称,得:
,,
解得:,,
∴.
故答案为:.
【点睛】
本题考查了关于y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.
三、解答题(共66分)
19、(1)分式被拆分成了一个整式与一个分式的和;(2)0;1.
【分析】(1)参照例题材料,设,然后求出m、n的值,从而即可得出答案;
(2)先根据得出,再根据不等式的运算即可得.
【详解】(1)由分母为,可设
对应任意x,上述等式均成立
,解得
这样,分式被拆分成了一个整式与一个分式的和;
(2)由(1)得
当时,
,且当时,等号成立
则当时,取得最小值,最小值为1
故答案为:0;1.
【点睛】
本题考查了分式的拆分运算、平方数的非负性、不等式的运算等知识点,读懂材料,掌握分式的运算法则是解题关键.
20、65°
【分析】根据等腰三角形的性质得到,再证明,得到,再根据三角形额内角和与平角的性质即可求解.
【详解】由题意:,,有
又,,
∴,
∴
又,
∴
【点睛】
此题主要考查等腰三角形的性质,解题的关键是熟知等腰三角形的性质及全等三角形的判定与性质.
21、,.
【分析】
先进行分式混合运算,再由已知得出,代入原式进行计算即可.
【详解】
原式=
=
==,
由a满足得,故原式=.
【点睛】
本题考查了分式的混合运算——分式的化简求值,熟练掌握运算法则以及运算顺序是解题的关键.
22、(1)1;(2)不超过m的最大整数是1.
【分析】(1)由①②③的规律写出式子即可;
(2)根据题目中的规律计算即可得到结论.
【详解】解:(1)观察可得,=1;
(2)m=++…+
=1+1+1+…+
=1×1+(+++…+)
=1+(1﹣+﹣+﹣+…+)
=1+(1﹣)
=,
∴不超过m的最大整数是1.
【点睛】
本题主要考查了二次根式的性质与化简,解题的关键是找出规律.
23、(1)2;(2)y=150x﹣1500(10≤x≤1);(3)1分钟.
【分析】(1)根据路程与速度、时间的关系,首先求出C、B两点的坐标,即可解决问题;
(2)根据C、D两点坐标,利用待定系数法即可解决问题;
(3)求出原计划步行到达图书馆的时间为n,即可解决问题.
【详解】解:(1)步行速度:10÷6=50m/min,单车速度:3×50=150m/min,单车时间:100÷150=20min,1﹣20=10,
∴C(10,0),
∴A到B是时间==2min,
∴B(8,0),
∴BC=2,
∴小亮在家停留了2分钟.
故答案为:2;
(2)设y=kx+b,过C、D(1,100),
∴,解得,
∴y=150x﹣1500(10≤x≤1)
(3)原计划步行到达图书馆的时间为n分钟,n==60
n﹣m=60﹣1=1分钟,
故答案为:1.
【点睛】
本题考查一次函数的应用,利用数形结合思想解题是关键.
24、
【分析】把x,y的值代入后,用完全平方公式计算即可.
【详解】原式
.
【点睛】
本题考查了二次根式的混合运算.在代入求值时,能用公式化简的,就要用公式化简,可能简化计算过程,避免出错.
25、a2+b2=19,.
【分析】利用完全平方公式变形即可得到,将通分后将ab及a+b的值代入即可计算.
【详解】
.
【点睛】
此题考查完全平方公式的变形利用,分式的求值计算.
26、(1)4×6-52=24-25=-1;(2)n(n+2)-(n+1)2=-1;(3)见解析.
【解析】(1)根据①②③的算式中,变与不变的部分,找出规律,写出新的算式;
(2)将(1)中发现的规律,由特殊到一般,得出结论;
(3)利用整式的混合运算方法加以证明.
【详解】解:(1)第4个算式为:4×6−52=24−25=−1;
(2)n(n+2)-(n+1)2=-1;
(3)一定成立.
理由:n(n+2)−(n+1)2=n2+2n−(n2+2n+1)=n2+2n−n2−2n−1=−1.
故n(n+2)-(n+1)2=-1成立.
【点睛】
本题是规律型题,考查了整式的混合运算的运用.关键是由特殊到一般,得出一般规律,运用整式的运算进行检验.
相关试卷
这是一份重庆市江津、聚奎中学2023-2024学年数学八年级第一学期期末学业质量监测模拟试题【含解析】,共18页。
这是一份重庆市江津、聚奎中学2023-2024学年数学八年级第一学期期末调研模拟试题【含解析】,共24页。试卷主要包含了考生要认真填写考场号和座位序号,下列算式中,计算结果等于的是,下列图形中,轴对称图形的个数是,下列命题是真命题的是,下列四种说法等内容,欢迎下载使用。
这是一份重庆市江津、聚奎中学2023-2024学年八年级数学第一学期期末达标检测模拟试题【含解析】,共19页。试卷主要包含了若a+b=5,则代数式,如果中不含的一次项,则等内容,欢迎下载使用。