资料中包含下列文件,点击文件名可预览资料内容








还剩12页未读,
继续阅读
所属成套资源:湘教版(2024)七年级数学上册同步课件
成套系列资料,整套一键下载
数学七年级上册(2024)4.2 线段、射线、直线图文课件ppt
展开
这是一份数学七年级上册(2024)4.2 线段、射线、直线图文课件ppt,文件包含第2课时线段长短的比较pptx、两点之间线段最短mp4、几何作图初步mp4等3份课件配套教学资源,其中PPT共20页, 欢迎下载使用。
观察这三组图形,你能比较出每组图形中线段的长短吗?
三组图形中,每组的线段a和线段b长度均相等.
怎样比较图中的线段AB,CD的长短呢?
②把其中一条线段移到另一条上作比较
线段AB的长度记作AB或|AB|.
为简便起见,本教材把线段AB的长度记作AB;一般可从上下文区分AB表示的是线段还是线段AB的长度.
用圆规截取的方法比较线段AB和CD的长短,可能出现以下几种情况:
如图,点 C 落在线段 AB 的延长线(即以 B 为端点,方向为A到 B 的射线)上,则线段AC 是线段AB 与线段 BC的和,记作 AC=AB + BC,线段 BC 是线段 AC 与线段 AB 的差,记作 BC=AC-AB.
杭州湾跨海大桥是跨越杭州湾的便捷通道. 大桥北起嘉兴市,跨越宽阔的杭州湾海域后止于宁波市,全长36km. 大桥建成后宁波至上海间的陆路距离缩短了约120km. 这是什么原理?
连接两点的线段的长度,叫作这两点的距离.
如图,已知线段a,借助圆规和直尺作一条线段使它等于2a.
线段AC就是所求作的线段
若点B在线段AC上,且把线段AC分成相等的两条线段AB与BC,这时B叫作线段AC的中点.
你能试着画出线段的三等分点,四等分点吗?
1.如图,在直线上有A,B,C三点,AB=4 cm,BC=3 cm,如果O是线段AC的中点,求线段OB的长度.
计算线段长度的一般方法:
① 逐段计算:求线段的长度,主要围绕线段的和、差、倍、分关系展开. 若每一条线段的长度均已确定,所求问题可迎刃而解.
② 整体转化:巧妙转化是解题关键.首先将线段转化为两条线段的和,然后再通过线段的中点的等量关系进行替换,将未知线段转化为已知线段.
如图,已知线段a,b(a>b),作一条线段使它等于a-b.
线段BC就是所求作的线段
【教材P158页 练习第1题】
1.用圆规截取的方法比较图中下列两组线段的大小:
【教材P158页 练习第2题】
2.如图,线段AB=6,C是AB的中点,D是AC的中点,求线段AC,AD的长.
3.如图,已知线段a,b,作一条线段使它等于a+b(只要求作出图形,不要求写作法).
【教材P158页 练习第3题】
4. 如图所示,直线 MN 表示一条铁路,铁路两旁各有一点 A 和B,表示两个工厂. 要在铁路上建一货站,使它到两厂距离之和最短,这个货站应建在何处?
观察这三组图形,你能比较出每组图形中线段的长短吗?
三组图形中,每组的线段a和线段b长度均相等.
怎样比较图中的线段AB,CD的长短呢?
②把其中一条线段移到另一条上作比较
线段AB的长度记作AB或|AB|.
为简便起见,本教材把线段AB的长度记作AB;一般可从上下文区分AB表示的是线段还是线段AB的长度.
用圆规截取的方法比较线段AB和CD的长短,可能出现以下几种情况:
如图,点 C 落在线段 AB 的延长线(即以 B 为端点,方向为A到 B 的射线)上,则线段AC 是线段AB 与线段 BC的和,记作 AC=AB + BC,线段 BC 是线段 AC 与线段 AB 的差,记作 BC=AC-AB.
杭州湾跨海大桥是跨越杭州湾的便捷通道. 大桥北起嘉兴市,跨越宽阔的杭州湾海域后止于宁波市,全长36km. 大桥建成后宁波至上海间的陆路距离缩短了约120km. 这是什么原理?
连接两点的线段的长度,叫作这两点的距离.
如图,已知线段a,借助圆规和直尺作一条线段使它等于2a.
线段AC就是所求作的线段
若点B在线段AC上,且把线段AC分成相等的两条线段AB与BC,这时B叫作线段AC的中点.
你能试着画出线段的三等分点,四等分点吗?
1.如图,在直线上有A,B,C三点,AB=4 cm,BC=3 cm,如果O是线段AC的中点,求线段OB的长度.
计算线段长度的一般方法:
① 逐段计算:求线段的长度,主要围绕线段的和、差、倍、分关系展开. 若每一条线段的长度均已确定,所求问题可迎刃而解.
② 整体转化:巧妙转化是解题关键.首先将线段转化为两条线段的和,然后再通过线段的中点的等量关系进行替换,将未知线段转化为已知线段.
如图,已知线段a,b(a>b),作一条线段使它等于a-b.
线段BC就是所求作的线段
【教材P158页 练习第1题】
1.用圆规截取的方法比较图中下列两组线段的大小:
【教材P158页 练习第2题】
2.如图,线段AB=6,C是AB的中点,D是AC的中点,求线段AC,AD的长.
3.如图,已知线段a,b,作一条线段使它等于a+b(只要求作出图形,不要求写作法).
【教材P158页 练习第3题】
4. 如图所示,直线 MN 表示一条铁路,铁路两旁各有一点 A 和B,表示两个工厂. 要在铁路上建一货站,使它到两厂距离之和最短,这个货站应建在何处?