重庆市万州国本中学2023年八年级数学第一学期期末学业质量监测试题【含解析】
展开注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每题4分,共48分)
1.下列各式中,计算结果是的是( )
A.B.C.D.
2.已知直角三角形的两条边长分别是3cm和4cm,则它的第三边长为( )
A.4cmB. cmC.5cmD.5cm或cm
3.9的平方根是( )
A.B.C.D.
4.若(2x﹣y)2+M=4x2+y2,则整式M为( )
A.﹣4xyB.2xyC.﹣2xyD.4xy
5.当时,代数式的值为( ).
A.7B.C.D.1
6.下列长度的三条线段,能组成三角形的是( )
A.3、1、4B.3、5、9C.5、6、7D.3、6、10
7.如图,在△ABC 中,AD 是 BC 边上的高,且∠ACB=∠BAD,AE 平分∠CAD,交 BC于点 E,过点 E 作 EF∥AC,分别交 AB、AD 于点 F、G.则下列结论:①∠BAC=90°;②∠AEF=∠BEF; ③∠BAE=∠BEA; ④∠B=2∠AEF,其中正确的有( )
A.4 个B.3 个C.2 个D.1 个
8.如图,已知,垂足为,,,则可得到,理由是( )
A.B.C.D.
9.如图,将矩形纸片 ABCD 折叠,AE、EF 为折痕,点 C 落在 AD 边上的 G 处, 并且点 B 落在 EG 边的 H 处,若 AB=,∠BAE=30°,则 BC 边的长为( )
A.3B.4C.5D.6
10.如图,点B、F、C、E在一条直线上,,,要使≌,需要添加下列选项中的一个条件是
A.B.C.D.
11.若x2+6x+k是完全平方式,则k=( )
A.9B.﹣9C.±9D.±3
12.若(x﹣2)(x+3)=x2+ax+b,则a,b的值分别为( )
A.a=5,b=﹣6B.a=5,b=6C.a=1,b=6D.a=1,b=﹣6
二、填空题(每题4分,共24分)
13.若最简二次根式与可以合并,则a=____.
14.在正整数中,
利用上述规律,计算_____.
15.中,,,,将它的一个锐角翻折,使该锐角顶点落在其对边的中点处,折痕交另一直角边于点,交斜边于点,则的周长为__________.
16.如图,在中,,,的垂直平分线与交于点,与交于点,连接.若,则的长为____________.
17.、、的公分母是___________ .
18.若,,则________.
三、解答题(共78分)
19.(8分)小明的妈妈在菜市场买回3斤萝卜,2斤排骨,准备做萝卜排骨汤,妈妈说:“今天买这两样菜共花了78.7元,去年这时买3斤萝卜,2斤排骨只要43元”.爸爸说:“报纸上说了萝卜的单价下降10%,排骨单价上涨90%”,请你来算算,小明的妈妈去年买的萝卜和排骨的单价分别是多少?
20.(8分)如图,△ABC中,AB=AC,∠C=30°,DA⊥BA于A,BC=6cm,求AD的长.
21.(8分)如图,已知BD是△ABC的角平分线,点E、F分别在边AB、BC上,ED∥BC,EF∥AC.求证:BE=CF.
22.(10分)如图,中,D是的中点,,过D点的直线交于F,交于G点,,交于点E,连结.
证明:(1);
(2).
23.(10分)把下列各式分解因式:
(1) (2)
24.(10分)如图1,把一张长方形的纸片ABCD沿对角线BD折叠,点C落在E处,BE交AD于点F.
(1)求证:FB=FD;
(2)如图2,连接AE,求证:AE∥BD;
(3)如图3,延长BA,DE相交于点G,连接GF并延长交BD于点H,求证:GH垂直平分BD.
25.(12分)解下列分式方程
(1) (2)
26.观察以下等式:
,
,
,
,
……
(1)依此规律进行下去,第5个等式为_______,猜想第n个等式为______(n为正整数);
(2)请利用分式的运算证明你的猜想.
参考答案
一、选择题(每题4分,共48分)
1、D
【解析】试题分析:利用十字相乘法进行计算即可.
原式=(x-2)(x+9)
故选D.
考点:十字相乘法因式分解.
2、D
【分析】分4为直角边和斜边两种情况,结合勾股定理求得第三边即可.
【详解】设三角形的第三边长为xcm,
由题意,分两种情况:
当4为直角边时,则第三边为斜边,由勾股定理得:,解得:x=5,
当4为斜边时,则第三边为直角边,由勾股定理得:,解得:x=,
∴第三边长为5cm或cm,
故选:D.
【点睛】
本题考查了勾股定理,解答的关键是分类确定4为直角边还是斜边.
3、C
【分析】根据平方根的定义进行求解即可.
【详解】解:9的平方根是.
故选C.
【点睛】
本题考查平方根,一个正数有两个实平方根,它们互为相反数.
4、D
【分析】根据完全平方公式,即可解答.
【详解】解:因为(2x﹣y)2+M=4x2+y2,(2x﹣y)2+4xy=4x2+y2,
所以M=4xy,
故选:D.
【点睛】
本题考查完全平方公式,解题的关键是掌握完全平方公式的概念:两数和(或差)的平方,等于它们的平方和,再加上(或减去)它们积的2倍.
5、B
【分析】把代入即可求解.
【详解】把代入得3-4=-1
故选B.
【点睛】
此题主要考查代数式求值,解题的关键把x的值代入.
6、C
【分析】根据三角形的三边关系进行分析判断.
【详解】A、1+3=4,不能组成三角形;
B、3+5=8<9,不能组成三角形;
C、5+6=11>7,能够组成三角形;
D、3+6=9<10,不能组成三角形.
故选:C.
【点睛】
本题考查了能够组成三角形三边的条件:用两条较短的线段相加,如果大于最长的那条线段就能够组成三角形.
7、B
【解析】利用高线和同角的余角相等,三角形内角和定理即可证明①,再利用等量代换即可得到③
④均是正确的,②缺少条件无法证明.
【详解】解:由已知可知∠ADC=∠ADB=90°,
∵∠ACB=∠BAD
∴90°-∠ACB=90°-∠BAD,即∠CAD=∠B,
∵三角形ABC的内角和=∠ACB+∠B+∠BAD+∠CAD=180°,
∴∠CAB=90°,①正确,
∵AE平分∠CAD,EF∥AC,
∴∠CAE=∠EAD=∠AEF,∠C=∠FEB=∠BAD,②错误,
∵∠BAE=∠BAD+∠DAE,∠BEA=∠BEF+∠AEF,
∴∠BAE=∠BEA,③正确,
∵∠B=∠DAC=2∠CAE=2∠AEF,④正确,
综上正确的一共有3个,故选B.
【点睛】
本题考查了三角形的综合性质,高线的性质,平行线的性质,综合性强,难度较大,利用角平分线和平行线的性质得到相等的角,再利用等量代换推导角之间的关系是解题的关键.
8、A
【分析】根据全等三角形的判定定理分析即可.
【详解】解:∵
∴∠AOB=∠COD=90°
在Rt△AOB和Rt△COD中
∴(HL)
故选A.
【点睛】
此题考查的是全等三角形的判定定理,掌握用HL判定两个三角形全等是解决此题的关键.
9、A
【解析】利用三角函数求出直角三角形各边长度,再证明△AEC1和△CC1E是等边三角形,即可求出BC长度。
【详解】解:连接CC1,如下图所示
∵在Rt△ABE中,∠BAE=30,AB=
∴BE=AB×tan30°=1,AE=2,
∴∠AEB1=∠AEB=60°
由AD∥BC,得∠C1AE=∠AEB=60°
∴△AEC1为等边三角形,
∴△CC1E也为等边三角形,
∴EC=EC1=AE=2
∴BC= BE+EC=3
所以A选项是正确的
【点睛】
本题考查直角三角形中的边角关系,属于简单题,关键会用直角三角函数求解直角边长。
10、A
【分析】根据“SAS”可添加BF=EC使△ABC≌△DEF.
【详解】解:∵AB∥ED,AB=DE,
∴∠B=∠E,
∴当BF=EC时,
可得BC=EF,
可利用“SAS”判断△ABC≌△DEF.
故选A.
【点睛】
本题考查了全等三角形的判定:全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.
11、A
【解析】试题分析:若x2+6x+k是完全平方式,则k是一次项系数6的一半的平方.
解:∵x2+6x+k是完全平方式,
∴(x+3)2=x2+6x+k,即x2+6x+1=x2+6x+k
∴k=1.
故选A.
考点:完全平方式.
12、D
【分析】等式左边利用多项式乘多项式法则计算,再利用多项式相等的条件求出a与b的值即可.
【详解】解:∵(x﹣2)(x+3)=x2+x﹣6=x2+ax+b,
∴a=1,b=﹣6,
故选:D.
【点睛】
此题考查了多项式乘多项式以及多项式相等的条件,熟练掌握运算法则是解本题的关键.
二、填空题(每题4分,共24分)
13、1
【分析】由于两个最简二次根式可以合并,因此它们是同类二次根式,即被开方数相同.由此可列出一个关于a的方程,解方程即可求出a的值.
【详解】解:由题意,得1+2a=5−2a,
解得a=1.
故答案为1.
【点睛】
本题考查同类二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式.
14、
【分析】先依据题例用平方差公式展开,再利用乘法分配律交换位置后,相乘进行约分计算即可.
【详解】解:
=
=
=
=
=,
故答案为:.
【点睛】
本题考查运用因式分解对有理数进行简便运算.熟练掌握平方差公式是解题关键.
15、20cm或22cm
【分析】根据轴对称的性质:折叠前后图形的形状和大小不变分折叠∠A和∠B两种情况求解即可.
【详解】当∠B翻折时,B点与D点重合,DE与EC的和就是BC的长,
即DE+EC=16cm,CD=AC=6cm,故△CDE的周长为16+6=22cm;
当∠A翻折时,A点与D点重合.同理可得DE+EC=AC=12cm,CD=BC=8cm,
故△CDE的周长为12+8=20cm.
故答案为20cm或22cm.
【点睛】
本题考查图形的翻折变换.解题时应注意折叠是一种对称变换,它属于轴对称.
16、1
【分析】根据线段垂直平分线上的点到线段两端点的距离相等可得AD=BD,再根据等边对等角可得∠A=∠ABD,然后利用三角形的一个外角等于与它不相邻的两个内角的和求出∠BDC=30°,再根据直角三角形30°角所对的直角边等于斜边的一半解答即可.
【详解】解:∵DE是AB的垂直平分线,
∴AD=BD=12cm,
∴∠A=∠ABD=15°,
∴∠BDC=∠A+∠ABD=15°+15°=30°,
∴在Rt△BCD中,BC=BD=×12=1.
故答案为1.
【点睛】
本题考查线段垂直平分线上的点到线段两端点的距离相等的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,直角三角形30°角所对的直角边等于斜边的一半的性质.
17、12x3y-12x2y2
【解析】根据确定最简公分母的方法进行解答即可.
【详解】系数的最小公倍数是12;
x的最高次数是2;
y与(x-y)的最高次数是1;
所以最简公分母是12x2y(x-y).
故答案为12x2y(x-y).
【点睛】
此题考查了最简公分母的取法,确定最简公分母的方法有三步,分别为:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,三步得到的因式的积即为最简公分母.
18、1
【分析】根据同底数幂的除法法则,用除以,求出的值是多少即可.
【详解】解:.
故答案为:1.
【点睛】
此题主要考查了同底数幂的除法法则:同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.
三、解答题(共78分)
19、小明的妈妈去年买的萝卜的单价为1元/斤,排骨的单价为20元/斤.
【分析】设小明的妈妈去年买的萝卜的单价为x元/斤,排骨的单价为y元/斤,根据总价=单价×数量结合妈妈今天和去年买3斤萝卜、2斤排骨所花钱数,即可得出关于x,y的二元一次方程组,解之即可得出结论.
【详解】解:设小明的妈妈去年买的萝卜的单价为x元/斤,排骨的单价为y元/斤,
依题意,得:,
解得:.
答:小明的妈妈去年买的萝卜的单价为1元/斤,排骨的单价为20元/斤.
【点睛】
本题考查了二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程组,再求解.
20、2
【分析】根据等边对等角可得∠B=∠C,再利用三角形的内角和定理求出∠BAC=120°,然后求出∠CAD=30°,从而得到∠CAD=∠C,根据等角对等边可得AD=CD,再根据直角三角形30°角所对的直角边等于斜边的一半可得BD=2AD,然后根据BC=BD+CD列出方程求解即可
【详解】∵AB=AC,
∴∠B=∠C=30°,
∴∠BAC=180°-2×30°=120°,
∵DA⊥BA,
∴∠BAD=90°,
∴∠CAD=120°-90°=30°,
∴∠CAD=∠C,
∴AD=CD,
在Rt△ABD中,
∵∠B=30°,∠BAD=90°,
∴BD=2AD,
∴BC=BD+CD=2AD+AD=3AD,
∵BC=6cm,
∴AD=2cm.
【点睛】
本题主要考查了等腰三角形性质以及直角三角形性质的综合运用,熟练掌握相关概念是解题关键.
21、证明见解析.
【解析】试题分析:先利用平行四边形性质证明DE=CF,再证明EB=ED,即可解决问题.
试题解析:∵ED∥BC,EF∥AC,∴四边形EFCD是平行四边形,∴DE=CF,∵BD平分∠ABC,∴∠EBD=∠DBC,∵DE∥BC,∴∠EDB=∠DBC,∴∠EBD=∠EDB,∴EB=ED,∴EB=CF.
考点:平行四边形的判定与性质.
22、(1)证明见解析;(2)证明见解析.
【分析】(1)只需要利用ASA先判定△BGD≌△CFD,即可得出BG=CF;
(2)利用全等的性质可得GD=FD,再有DE⊥GF,从而根据垂直平分线的性质得出EG=EF,再根据三角形两边和大于第三边得出BE+CF>EF.
【详解】解:(1)证明:
∵BG∥AC,
∴∠DBG=∠DCF.
∵D为BC的中点,
∴BD=CD
又∵∠BDG=∠CDF,
在△BGD与△CFD中,
∵
∴△BGD≌△CFD(ASA).
∴BG=CF.
(2)∵△BGD≌△CFD,
∴GD=FD,BG=CF.
又∵DE⊥FG,
∴EG=EF(垂直平分线到线段端点的距离相等).
∴在△EBG中,BE+BG>EG,
即BE+CF>EF.
【点睛】
本题考查全等三角形的性质和判定,三角形三边关系,垂直平分线的性质.(1)中掌握全等三角形的判定定理,并能灵活运用是解题关键;(2)能结合全等三角形的性质和垂直平分线的性质把线段代换到同一个三角形中是解题关键.
23、(1);(2)
【分析】(1)先提取公因式,再利用平方差公式,分解因式,即可;
(2)先提取公因式,再利用完全平方公式,分解因式,即可.
【详解】(1)
;
(2)
;
【点睛】
本题主要考查分解因式,掌握提取公因式法和公式法分解因式,是解题的关键.
24、(1)证明见解析;(2)证明见解析;(3)证明见解析.
【解析】试题分析:(1)根据矩形的性质和折叠的性质可得:AB=DC=DE,∠BAD=∠BCD=∠BED=90°,根据AAS可证△ABF≌△EDF,根据全等三角形的性质可证BF=DF;
(2)根据全等三角形的性质可证:FA=FE,根据等边对等角可得:∠FAE=∠FEA,根据三角形内角和定理可证:2∠AEF +∠AFE =2∠FBD+∠BFD =180°,所以可证∠AEF=∠FBD,根据内错角相等,两直线平行可证AE∥BD;
(3)根据矩形的性质可证:AD=BC=BE,AB=CD=DE,BD=DB,根据SSS可证:△ABD≌△EDB,根据全等三角形的性质可证:∠ABD=∠EDB,根据等角对等边可证:GB=GD,根据HL可证:△AFG≌△EFG,根据全等三角形的性质可证:∠AGF=∠EGF,所以GH垂直平分BD.
试题解析:(1)∵长方形ABCD,
∴AB=DC=DE,∠BAD=∠BCD=∠BED=90°,
在△ABF和△DEF中,
∴△ABF≌△EDF(AAS),
∴BF=DF.
(2)∵△ABF≌△EDF,
∴FA=FE,
∴∠FAE=∠FEA,
又∵∠AFE=∠BFD,且2∠AEF +∠AFE =2∠FBD+∠BFD =180°,
∴∠AEF=∠FBD,
∴AE∥BD,
(3)∵长方形ABCD,
∴AD=BC=BE,AB=CD=DE,BD=DB,
∴△ABD≌△EDB(SSS),
∴∠ABD=∠EDB,
∴GB=GD,
在△AFG和△EFG中,
∠GAF=∠GEF=90°,
FA=FE,
FG=FG,
∴△AFG≌△EFG(HL),
∴∠AGF=∠EGF,
∴GH垂直平分BD.
【方法II】
(1)∵△BCD≌△BED,
∴∠DBC=∠EBD
又∵长方形ABCD,
∴AD∥BC,
∴∠ADB=∠DBC,
∴∠EBD=∠ADB,
∴FB=FD.
(2)∵长方形ABCD,
∴AD=BC=BE,
又∵FB=FD,
∴FA=FE,
∴∠FAE=∠FEA,
又∵∠AFE=∠BFD,且2∠AEF +∠AFE =2∠FBD+∠BFD =180°,
∴∠AEF=∠FBD,
∴AE∥BD,
(3)∵长方形ABCD,
∴AD=BC=BE,AB=CD=DE,BD=DB,
∴△ABD≌△EDB,
∴∠ABD=∠EDB,
∴GB=GD,
又∵FB=FD,
∴GF是BD的垂直平分线,
即GH垂直平分BD.
考点:1.折叠的性质;2.全等三角形的判定与性质;3.平行线的性质与判定;4.矩形的性质.
25、(1)无解.(2)x=
【解析】各分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
【详解】(1)
去分母得,2(x+1)-3(x-1)=x+3,
解方程,得,x=1,
经检验,x=1是原方程的增根,原方程无解.
(2)
去分母得,2x=3-2(2x-2)
解方程得,x=,
经检验,x=是原方程的解.
【点睛】
此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.
26、(1),;(2)见解析
【分析】(1)仿照阅读材料中的等式,利用式与式之间的关联得到第5个等式,进而确定出第n个等式即可;
(2)验证所得的等式即可.
【详解】解:(1),
.
(2)证明∵,
,
.
【点睛】
此题考查了分式的混合运算,以及有理数的混合运算,及对所给情境进行综合归纳的能力,熟练掌握运算法则是解本题的关键.
重庆市万州国本中学2023年数学八年级第一学期期末学业水平测试试题【含解析】: 这是一份重庆市万州国本中学2023年数学八年级第一学期期末学业水平测试试题【含解析】,共19页。试卷主要包含了考生必须保证答题卡的整洁,将用科学记数法表示应为等内容,欢迎下载使用。
重庆市万州国本中学2023-2024学年数学八年级第一学期期末联考试题【含解析】: 这是一份重庆市万州国本中学2023-2024学年数学八年级第一学期期末联考试题【含解析】,共19页。试卷主要包含了考生必须保证答题卡的整洁,如图,在中,按以下步骤作图,把式子化筒的结果为,下列运算正确的是,把分解因式,结果正确的是等内容,欢迎下载使用。
重庆市万州国本中学2023-2024学年八年级数学第一学期期末质量跟踪监视试题【含解析】: 这是一份重庆市万州国本中学2023-2024学年八年级数学第一学期期末质量跟踪监视试题【含解析】,共21页。试卷主要包含了考生要认真填写考场号和座位序号,下列实数中是无理数的是,下列因式分解正确的是,一次函数 的图象不经过的象限是等内容,欢迎下载使用。