所属成套资源:新高考数学一轮复习核心考点讲与练 (2份打包,原卷版+解析版)
新高考数学一轮复习核心考点讲与练考点12 等式与不等式(2份打包,原卷版+解析版)
展开
这是一份新高考数学一轮复习核心考点讲与练考点12 等式与不等式(2份打包,原卷版+解析版),文件包含新高考一轮复习核心考点讲与练考点12等式与不等式原卷版doc、新高考一轮复习核心考点讲与练考点12等式与不等式解析版doc等2份试卷配套教学资源,其中试卷共20页, 欢迎下载使用。
一、等式与不等式的性质
1.两个实数比较大小的方法
(1)作差法eq \b\lc\{(\a\vs4\al\c1(a-b>0⇔a>b,,a-b=0⇔a=b,,a-b0)⇔a>b(a∈R,b>0),,\f(a,b)=1⇔a=b(a,b≠0),,\f(a,b)0)⇔a0).))
2.等式的性质
(1)对称性:若a=b,则b=a.
(2)传递性:若a=b,b=c,则a=c.
(3)可加性:若a=b,则a+c=b+c.
(4)可乘性:若a=b,则ac=bc;若a=b,c=d,则ac=bd.
3.不等式的性质
(1)对称性:a>b⇔b<a;
(2)传递性:a>b,b>c⇒a>c;
(3)可加性:a>b⇔a+c>b+c;a>b,c>d⇒a+c>b+d;
(4)可乘性:a>b,c>0⇒ac>bc;a>b,c<0⇒ac<bc;a>b>0,c>d>0⇒ac>bd;
(5)可乘方:a>b>0⇒an>bn(n∈N,n≥1);
(6)可开方:a>b>0⇒eq \r(n,a)>eq \r(n,b)(n∈N,n≥2).
二、均值不等式及其应用
1.均值不等式:eq \r(ab)≤eq \f(a+b,2)
(1)均值不等式成立的条件:a≥0,b≥0.
(2)等号成立的条件:当且仅当a=b时取等号.
(3)其中eq \f(a+b,2)称为正数a,b的算术平均数,eq \r(ab)称为正数a,b的几何平均数.
2.两个重要的不等式
(1)a2+b2≥2ab(a,b∈R),当且仅当a=b时取等号.
(2)ab≤eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(a+b,2)))eq \s\up12(2)(a,b∈R),当且仅当a=b时取等号.
3.利用均值不等式求最值
已知x≥0,y≥0,则
(1)如果积xy是定值p,那么当且仅当x=y时,x+y有最小值是2eq \r(p)(简记:积定和最小).
(2)如果和x+y是定值s,那么当且仅当x=y时,xy有最大值是eq \f(s2,4)(简记:和定积最大).
三、从函数的观点看一元二次方程和一元二次不等式
1.一元二次不等式
只含有一个未知数,并且未知数的最高次数为2的整式不等式叫作一元二次不等式.
2.三个“二次”间的关系
3.(x-a)(x-b)>0或(x-a)(x-b)0(0(0,b>0)等,同时还要注意不等式成立的条件和等号成立的条件.
5.“三个二次”的关系是解一元二次不等式的理论基础;一般可把a<0的情况转化为a>0时的情形.
6.在解决不等式ax2+bx+c>0(或≥0)对于一切x∈R恒成立问题时,当二次项系数含有字母时,需要对二次项系数a进行讨论,并研究当a=0时是否满足题意.
7.含参数的一元二次不等式在某区间内恒成立问题,常有两种处理方法:一是利用二次函数在区间上的最值来处理;二是先分离出参数,再去求函数的最值来处理,一般后者比较简单.
不等式的性质
1.(2021新疆乌鲁木齐市第四中学检测)下列命题正确的是( )
A.若 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 B.若 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,则 SKIPIF 1 < 0
C.若 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 D.若 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,则 SKIPIF 1 < 0
不等式的解法
2.(2021陕西省西安中学检测)不等式 SKIPIF 1 < 0 的解集为 SKIPIF 1 < 0 ,则不等式 SKIPIF 1 < 0 的解集为()
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0
C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
基本不等式以及应用
3.(2021辽宁省葫芦岛市模拟)已知向量 SKIPIF 1 < 0 ,若 SKIPIF 1 < 0 则 SKIPIF 1 < 0 的最小值为( )
A.12 B. SKIPIF 1 < 0 C.15 D. SKIPIF 1 < 0
4.(2021吉林省实验中学检测)若函数 SKIPIF 1 < 0 在 SKIPIF 1 < 0 处取最小值,则 SKIPIF 1 < 0 等于( )
A. 3B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. 4
1.(2020•新全国1山东)(多选)已知a>0,b>0,且a+b=1,则( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0
C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
2.(2019(新课标Ⅱ))若a>b,则
A. ln(a−b)>0B. 3a0D. │a│>│b│
3.(2020•江苏卷)已知 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 的最小值是_______.
一、单选题
1.(2022·广东·模拟预测)已知 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 的最小值为( )
A. 13B. 19C. 21D. 27
2.(2022·福建宁德·模拟预测)已知 SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 的最小值为( )
A. SKIPIF 1 < 0 B. 8C. SKIPIF 1 < 0 D. 10
3.(2022·重庆·一模)已知 SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 的最小值为( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
二、多选题
4.(2022·全国·模拟预测)已知实数x,y满足 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 ,则( )
A. xy的最大值为 SKIPIF 1 < 0 B. SKIPIF 1 < 0 的最小值为 SKIPIF 1 < 0
C. SKIPIF 1 < 0 的最小值为1D. SKIPIF 1 < 0 的最小值为 SKIPIF 1 < 0
5.(2022·广东汕头·一模)已知正实数a,b满足 SKIPIF 1 < 0 ,则以下不等式正确的是( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
6.(2022·江苏泰州·一模)下列函数中最小值为6的是( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0
C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
三、填空题
7.(2022·全国·模拟预测(文))已知正数 SKIPIF 1 < 0 、 SKIPIF 1 < 0 满足 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 的最小值是___________.
8.(2022·江西九江·一模(理))若a,b为正实数,直线 SKIPIF 1 < 0 与直线 SKIPIF 1 < 0 互相垂直,则ab的最大值为______.
判别式Δ=b2-4ac
Δ>0
Δ=0
Δ<0
二次函数
y=ax2+bx+c
(a>0)的图象
一元二次方程
ax2+bx+c=0
(a>0)的根
有两相异实根x1,x2(x1<x2)
有两相等实根x1=x2=-eq \f(b,2a)
没有实数根
ax2+bx+c>0
(a>0)的解集
eq \f({x|x>x2,或x<x1})
eq \b\lc\{\rc\}(\a\vs4\al\c1(x|x≠-\f(b,2a)))
R
ax2+bx+c<0
(a>0)的解集
{x|x1<x<x2}
∅
∅
不等式
解集
ab
(x-a)·(x-b)>0
{x|xb}
{x|x≠a}
{x|xa}
(x-a)·(x-b)
相关试卷
这是一份新高考数学一轮复习核心考点讲与练考点11 复数(2份打包,原卷版+解析版),文件包含新高考一轮复习核心考点讲与练考点11复数原卷版doc、新高考一轮复习核心考点讲与练考点11复数解析版doc等2份试卷配套教学资源,其中试卷共21页, 欢迎下载使用。
这是一份新高考数学一轮复习核心考点讲与练考点05 函数的应用(2份打包,原卷版+解析版),文件包含新高考一轮复习核心考点讲与练考点05函数的应用原卷版doc、新高考一轮复习核心考点讲与练考点05函数的应用解析版doc等2份试卷配套教学资源,其中试卷共72页, 欢迎下载使用。
这是一份新高考数学一轮复习核心考点讲与练考点03 函数及其性质(2份打包,原卷版+解析版),文件包含新高考一轮复习核心考点讲与练考点03函数及其性质原卷版doc、新高考一轮复习核心考点讲与练考点03函数及其性质解析版doc等2份试卷配套教学资源,其中试卷共103页, 欢迎下载使用。