所属成套资源:新高考数学一轮复习考点精讲练+易错题型 (2份打包,原卷版+解析版)
新高考数学一轮复习考点精讲练+易错题型第36讲 数列的综合运用(2份打包,原卷版+解析版)
展开
这是一份新高考数学一轮复习考点精讲练+易错题型第36讲 数列的综合运用(2份打包,原卷版+解析版),文件包含新高考数学一轮复习考点精讲练+易错题型第36讲数列的综合运用原卷版doc、新高考数学一轮复习考点精讲练+易错题型第36讲数列的综合运用解析版doc等2份试卷配套教学资源,其中试卷共34页, 欢迎下载使用。
一 等差、等比数列的综合应用
解决等差数列与等比数列的综合问题,关键是理清两个数列的关系:
(1)如果同一数列中部分项成等差数列,部分项成等比数列,则要把成等差数列和成等比数列的项分别抽出来,研究这些项与序号之间的关系;
(2)如果两个数列是通过运算综合在一起的,就要从分析运算入手,把两个数列分割开,再根据两个数列各自的特征进行求解.
二 数列与函数、不等式等的综合应用
1.数列可看作是自变量为正整数的一类函数,数列的通项公式相当于函数的解析式,所以我们可以用函数的观点来研究数列.
解决数列与函数综合问题的注意点:
(1)数列是一类特殊的函数,其定义域是正整数集,而不是某个区间上的连续实数,所以它的图象是一群孤立的点.
(2)转化为以函数为背景的条件时,应注意题中的限制条件,如函数的定义域,这往往是非常容易忽视的问题.
(3)利用函数的方法研究数列中相关问题时,应准确构造函数,注意数列中相关限制条件的转化.
2.数列与不等式的综合问题是高考考查的热点.考查方式主要有三种:
(1)判断数列问题中的一些不等关系;
(2)以数列为载体,考查不等式的恒成立问题;
(3)考查与数列问题有关的不等式的证明问题.
在解决这些问题时,要充分利用数列自身的特点,例如在需要用到数列的单调性的时候,可以通过比较相邻两项的大小进行判断.在与不等式的证明相结合时,注意构造函数,结合函数的单调性来证明不等式.
三 等差、等比数列的实际应用
1.数列实际应用中的常见模型
①等差模型:增加或减少的量是一个固定的常数 SKIPIF 1 < 0 , SKIPIF 1 < 0 是公差;
②等比模型:后一个量与前一个量的比是一个固定的常数 SKIPIF 1 < 0 , SKIPIF 1 < 0 是公比;
③递推数列模型:题目中给出的前后两项之间的关系不固定,随项的变化而变化,由此列递推关系式.
2.解答数列实际应用题的步骤
①审题:仔细阅读题干,认真理解题意;
②建模:将已知条件翻译成数学语言,将实际问题转化为数学问题;
③求解:求出该问题的数学解;
④还原:将所求结果还原到实际问题中.
在实际问题中建立数学模型时,一般有两种途径:①从特例入手,归纳猜想,再推广到一般结论;②从一般入手,找到递推关系,再进行求解.
四 数列中的探索性问题
对于数列中的探索性问题主要表现为存在型,解答此类问题的一般策略是:
(1)先假设所探求对象存在或结论成立,以此假设为前提进行运算或逻辑推理,若由此推出矛盾,则假设不成立,从而得到“否定”的结论,即不存在;
(2)若推不出矛盾,能求得符合题意的数值或取值范围,则能得到肯定的结论,即得到存在的结果.
五 数列的求和
求数列的前n项和,根据数列的不同特点,通常有以下几种方法:
(1)公式法,即直接利用等差数列、等比数列的求和公式求解;
(2)倒序相加法,即如果一个数列的前n项中,距首末两项“等距离”的两项之和都相等,则可使用倒序相加法求数列的前n项和.
(3)裂项相消法,即将数列的通项拆成结构相同的两式之差,然后消去相同的项求和.使用此方法时必须注意消去了哪些项,保留了哪些项,一般未被消去的项有前后对称的特点.
常见的裂项方法有:
(4)错位相减法,若数列 SKIPIF 1 < 0 是等差数列, SKIPIF 1 < 0 是等比数列,且公比为 SKIPIF 1 < 0 ,求 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和时,常用错位相减法求和.基本步骤是:列出和式,两边同乘以公比,两式相减并求和. 在写出 SKIPIF 1 < 0 与 SKIPIF 1 < 0 的表达式时,要将两式“错项对齐”,便于准确写出 SKIPIF 1 < 0 的表达式.
在运用错位相减法求和时需注意:
①合理选取乘数(或乘式);
②对公比 SKIPIF 1 < 0 的讨论;
③两式相减后的未消项及相消项呈现的规律;
④相消项中构成数列的项数.
(5)分组求和法,如果一个数列可写成 SKIPIF 1 < 0 的形式,而数列 SKIPIF 1 < 0 , SKIPIF 1 < 0 是等差数列或等比数列或可转化为能够求和的数列,那么可用分组求和法.
【考点研习一点通】
考点一 等差、等比数列的综合应用
1.已知等差数列 SKIPIF 1 < 0 中, SKIPIF 1 < 0 .
(1)设 SKIPIF 1 < 0 ,求证:数列 SKIPIF 1 < 0 是等比数列;
(2)求 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和.
【答案】(1)见解析;(2) SKIPIF 1 < 0 .
【解析】(1)设等差数列 SKIPIF 1 < 0 的公差为 SKIPIF 1 < 0 ,
由 SKIPIF 1 < 0 ,可得 SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 .
又由 SKIPIF 1 < 0 ,可得 SKIPIF 1 < 0 .
故 SKIPIF 1 < 0 ,
依题意, SKIPIF 1 < 0 ,
因为 SKIPIF 1 < 0 (常数),
故 SKIPIF 1 < 0 是首项为4,公比 SKIPIF 1 < 0 的等比数列.
(2)因为 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和为 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和为 SKIPIF 1 < 0 ,
故 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和为 SKIPIF 1 < 0 .
【名师点睛】本题主要考查了等差数列和等比数列的通项公式,以及等差、等比数列的求和的应用,其中熟记等差、等比数列的通项公式和求和公式是解答的关键,着重考查了推理与运算能力,属于基础题.求解本题时,(1)设 SKIPIF 1 < 0 的公差为 SKIPIF 1 < 0 ,由题意求得 SKIPIF 1 < 0 ,即可求得数列的通项公式,进而得到数列 SKIPIF 1 < 0 的通项公式,利用等比数列的定义,即可作出证明;(2)由(1)可得 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和和 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和,即可得到数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和.
考点二 数列与函数、不等式等的综合应用
2.已知函数 SKIPIF 1 < 0 的图象过点 SKIPIF 1 < 0 ,且点 SKIPIF 1 < 0 在函数 SKIPIF 1 < 0 的图象上,又 SKIPIF 1 < 0 为等比数列, SKIPIF 1 < 0 .
(1)求数列 SKIPIF 1 < 0 及 SKIPIF 1 < 0 的通项公式;
(2)若 SKIPIF 1 < 0 ,数列 SKIPIF 1 < 0 的前 SKIPIF 1 < 0 项和为 SKIPIF 1 < 0 ,求证: SKIPIF 1 < 0 .
【答案】(1) SKIPIF 1 < 0 , SKIPIF 1 < 0 ;(2)见解析.
【解析】(1) SKIPIF 1 < 0 函数 SKIPIF 1 < 0 的图象过点 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 .
又点 SKIPIF 1 < 0 在函数 SKIPIF 1 < 0 的图象上,从而 SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 ,
∴ SKIPIF 1 < 0
SKIPIF 1 < 0 公比 SKIPIF 1 < 0
SKIPIF 1 < 0 .
(2) SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
SKIPIF 1 < 0 .
【名师点睛】本题考查了通过点在函数图象上求出函数解析式、以及考查求等比数列的通项公式、利用裂项相消法求数列的前 SKIPIF 1 < 0 项和.
考点三 等差、等比数列的实际应用
3.某台商到大陆一创业园投资72万美元建起一座蔬菜加工厂,第一年各种经费12万美元,以后每年比上一年增加4万美元,每年销售蔬菜收入50万美元,设f(n)表示前n年的纯利润(f(n)=前n年的总收入-前n年的总支出-投资额).
(1)从第几年开始获得纯利润?
(2)若五年后,该台商为开发新项目,决定出售该厂,现有两种方案:①年平均利润最大时,以48万美元出售该厂;②纯利润总和最大时,以16万美元出售该厂.问哪种方案较合算?
【解析】由题意,知每年的经费构成了以12为首项,4为公差的等差数列,
则f(n)=50n-[12n+ SKIPIF 1 < 0 ×4]-72=-2n2+40n-72.
(1)获得纯利润就是要求f(n)>0,即-2n2+40n-72>0,解得2
相关试卷
这是一份新高考数学一轮复习考点精讲练+易错题型第35讲 数列的求和(2份打包,原卷版+解析版),文件包含新高考数学一轮复习考点精讲练+易错题型第35讲数列的求和原卷版doc、新高考数学一轮复习考点精讲练+易错题型第35讲数列的求和解析版doc等2份试卷配套教学资源,其中试卷共35页, 欢迎下载使用。
这是一份新高考数学一轮复习考点精讲练+易错题型第34讲 等比数列(2份打包,原卷版+解析版),文件包含新高考数学一轮复习考点精讲练+易错题型第34讲等比数列原卷版doc、新高考数学一轮复习考点精讲练+易错题型第34讲等比数列解析版doc等2份试卷配套教学资源,其中试卷共27页, 欢迎下载使用。
这是一份新高考数学一轮复习考点精讲练+易错题型第33讲 数列的概念与等差数列(2份打包,原卷版+解析版),文件包含新高考数学一轮复习考点精讲练+易错题型第33讲数列的概念与等差数列原卷版doc、新高考数学一轮复习考点精讲练+易错题型第33讲数列的概念与等差数列解析版doc等2份试卷配套教学资源,其中试卷共32页, 欢迎下载使用。