新高考数学一轮复习第10章 第01讲 分类加法计数原理与分步乘法计数原理 (精讲)(2份打包,原卷版+教师版)
展开
这是一份新高考数学一轮复习第10章 第01讲 分类加法计数原理与分步乘法计数原理 (精讲)(2份打包,原卷版+教师版),文件包含新高考数学一轮复习第10章第01讲分类加法计数原理与分步乘法计数原理精讲教师版doc、新高考数学一轮复习第10章第01讲分类加法计数原理与分步乘法计数原理精讲学生版doc等2份试卷配套教学资源,其中试卷共31页, 欢迎下载使用。
第一部分:知识点精准记忆
第二部分:课前自我评估测试
第三部分:典型例题剖析
题型一:分类加法计数原理的应用
题型二:分步乘法计数原理
题型三:两个计数原理的综合应用
角度1:与数字有关的问题
角度2:与几何有关的问题
角度3:涂色问题
第四部分:高考真题感悟
第一部分:知 识 点 精 准 记 忆
知识点一:分类加法计数原理
完成一件事有两类不同方案,在第1类方案中有 SKIPIF 1 < 0 种不同的方法,在第2类方案中有 SKIPIF 1 < 0 种不同的方法,那么完成这件事共有 SKIPIF 1 < 0 种不同的方法.
知识点二:分步乘法计数原理
完成一件事需要两个步骤,做第1步有 SKIPIF 1 < 0 种不同的方法,做第2步有 SKIPIF 1 < 0 种不同的方法,那么完成这件事共有 SKIPIF 1 < 0 种不同的方法.
知识点三:分类加法计数原理和分布乘法计数原理推广
(1)完成一件事有 SKIPIF 1 < 0 类不同方案,在第1类方案中有 SKIPIF 1 < 0 种不同的方法,在第2类方案中有 SKIPIF 1 < 0 种不同的方法,
……,在第 SKIPIF 1 < 0 类方案中有 SKIPIF 1 < 0 种不同的方法,那么完成这件事共有 SKIPIF 1 < 0 种不同的方法.
(2)完成一件事需要 SKIPIF 1 < 0 个步骤,做第1步有 SKIPIF 1 < 0 种不同的方法,做第2步有 SKIPIF 1 < 0 种不同的方法,……,做第 SKIPIF 1 < 0 步有 SKIPIF 1 < 0 种不同的方法,那么完成这件事共有 SKIPIF 1 < 0 种不同的方法.
第二部分:课 前 自 我 评 估 测 试
1.(2022·全国·高二课时练习)已知集合 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,若从这两个集合中各取一个元素作为点的横坐标或纵坐标,则可得平面直角坐标系中第一、二象限内不同点的个数是( )
A.18B.16C.14D.10
2.(2022·全国·高二课时练习)某大学食堂备有6种荤菜、5种素菜、3种汤,现要配成一荤一素一汤的套餐,则可以配成不同套餐的种数为( )
A.30B.14C.33D.90
3.(2022·全国·高二课时练习)核糖核酸RNA是存在于生物细胞以及部分病毒、类病毒中的遗传信息载体.参与形成RNA的碱基有4种,分别用A,C,G,U表示.在一个RNA分子中,各种碱基能够以任意次序出现,假设某一RNA分子由100个碱基组成,则不同的RNA分子的种数为( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
4.(2022·全国·高二课时练习)某省新高考采用“ SKIPIF 1 < 0 ”模式:“3”为全国统考科目语文、数学、外语,所有学生必考;“1”为首选科目,考生须在物理、历史科目中选择1个科目;“2”为再选科目,考生可在思想政治、地理、化学、生物4个科目中选择2个科目.已知小明同学必选化学,那么他可选择的方案共有( )
A.4种B.6种C.8种D.12种
5.(2022·重庆·巫山县官渡中学高二阶段练习)从甲地去乙地有3班火车,从乙地去丙地有2班轮船,则从甲地去丙地可选择的旅行方式有______种
第三部分:典 型 例 题 剖 析
题型一:分类加法计数原理的应用
典型例题
例题1.(2022·广东珠海·高二期末)书架上有1本语文书,3本不同的数学书,4本不同的物理书,某位同学从中任取1本,共有( )种取法.
A.8B.7C.12D.5
例题2.(2022·陕西西安·高二期末(理))某班有男生13人,女生17人,从中选一名学生为数学课代表,则不同的选法共有( )
A.30种B.17种C.221种D.13种
例题3.(2022·全国·高二课时练习)在某种信息传输过程中,用4个数字的一个排列(允许数字重复)表示一个信息,不同排列表示不同信息,若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为( )
A.10B.11C.12D.7
同类题型归类练
1.(2022·湖南·长沙县实验中学高二期末)从数字1,2,3,4中取出3个数字(允许重复),组成三位数,各位数字之和等于6,则这样的三位数的个数为( )
A.7B.9C.10D.13
2.(2022·北京东城·高二期末)算盘是中国古代的一项重要发明,迄今已有2600多年的历史.现有一算盘,取其两档(如图一),自右向左分别表示十进制数的个位和十位,中间一道横梁把算珠分为上下两部分,梁上一珠拨下,记作数字5,梁下四珠,上拨一珠记作数字1(如图二算盘表示整数51).若拨动图1的两枚算珠,则可以表示不同整数的个数为( )
A.6B.8C.10D.15
3.(2022·广西·柳州市第三中学高二阶段练习(理))有不同的红球8个,不同的白球7个,不同的黄球6个,现从中任取不同的颜色的球两个,不同的取法有__________.
4.(2022·全国·模拟预测)某大学开设选修课,要求学生根据自己的专业方向以及自身兴趣从6个科目中选择3个科目进行研修.已知某班级a名学生对科目的选择如表所示,则 SKIPIF 1 < 0 的一组值可以是______.
题型二:分步乘法计数原理
典型例题
例题1.(2022·安徽·歙县教研室高二期末)现有3位游客来黄山旅游,分别从4个景点中任选一处游览,不同选法的种数是( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C.24D.12
例题2.(2022·吉林·辽源市田家炳高级中学校高二期末)2022年北京冬奥会吉祥物“冰墩墩”和冬残奥会吉祥物“雪容融”,有着可爱的外表和丰富的寓意,深受各国人民的喜爱.某商店有3个不同造型的“冰墩墩”吉祥物和2个不同造型的“雪容融”吉祥物展示在柜台上,要求“冰墩墩”和“雪容融”彼此间隔排列,则不同的排列方法有多少种?( )
A.24B.12C.6D.2
例题3.(2022·广西百色·高二期末(理))某学校推出了《植物栽培》,《手工编织》,《实用木工》,《实用电工》4门校本劳动选修课程,要求每个学生从中任选2门进行学习,则甲、乙两名同学的选课中恰有一门课程相同的选法为( )
A.16B.24C.12D.36
同类题型归类练
1.(2022·北京师大附中高二期中)2022年4月4日至2022年7月3日期间,北京本地燃油机动车尾号限行规定为
已知甲、乙、丙各拥有一辆本地燃油机动车,车牌尾号分别为1,2,7三人住在同一小区且工作地点相近,故商议拼车出行,每天任选一辆符合规定的车,但甲的车只用一天,按此限行规定,周一到周五不同的用车方案种数为( )
A.12B.16C.24D.36
2.(2022·河北石家庄·高二期末)7月3日,甲、乙两人从邢台各自乘坐火车到石家庄,当天从刑台到石家庄有11个车次,其中有5个车次的发车时间为凌晨1点到凌晨5点,有6个车次的发车时间为早上7点到晚上6点.已知甲选择凌晨6点以后出发的车次,乙选择凌晨1点到晚上6点出发的车次,则两人车次的不同选择共有( )
A.11种B.36种C.66种D.121种
3.(2022·全国·高二课时练习)7个不同型号的行李箱上分别对应贴有不同的标签以作标记,其中恰有3个行李箱标签贴错的种数为( )
A.49B.70C.265D.1854
4.(2022·广东·石门高级中学高二阶段练习)在一次运动会上有四项比赛的冠军在甲、乙、丙三人中产生,那么不同的夺冠情况共有( )种
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
5.(2022·陕西·西北农林科技大学附中高二期末(理))将6封信投入4个邮筒,且6封信全部投完,不同的投法有( )
A. SKIPIF 1 < 0 种B. SKIPIF 1 < 0 种C.4种D.24科
题型三:两个计数原理的综合应用
角度1:与数字有关的问题
典型例题
例题1.(2022·辽宁·二模)重庆九宫格火锅,是重庆火锅独特的烹饪方式.九宫格下面是相通的,实现了“底同火不同,汤通油不通”它把火锅分为三个层次,不同的格子代表不同的温度和不同的牛油浓度,其锅具抽象成数学形状如图(同一类格子形状相同):
“中间格“火力旺盛,不宜久煮,适合放一些质地嫩脆、顷刻即熟的食物;
“十字格”火力稍弱,但火力均匀,适合煮食,长时间加热以锁住食材原香;
“四角格”属文火,火力温和,适合焖菜,让食物软糯入味.现有6种不同食物(足够量),其中1种适合放入中间格,3种适合放入十字格,2种适合放入四角格.现将九宫格全部放入食物,且每格只放一种,若同时可以吃到这六种食物(不考虑位置),则有多少种不同放法( )
A.108B.36C.9D.6
例题2.(2022·全国·高三专题练习)在某运动会的百米决赛上,8名男运动员参加100米决赛.其中甲、乙、丙3人必须在1,2,3,4,5,6,7,8八条跑道的奇数号跑道上,则安排这8名运动员比赛的方式共有________种.
例题3.(2022·山东聊城·高二期末)数字2022具有这样的性质:它是6的倍数并且各位数字之和为6,称这种正整数为“吉祥数”.在所有的三位正整数中,“吉祥数”的个数为___________.
例题4.(2022·湖南·高二期中)从0,1,2,3,4五个数字中任取四个数字组成无重复数字的四位数.
(1)一共可以组成多少个?
(2)其中偶数有多少个?
同类题型归类练
1.(2022·全国·高二课时练习)将摆放在编号为 SKIPIF 1 < 0 五个位置上的 SKIPIF 1 < 0 件不同商品重新摆放,则恰有一件商品的位置不变的摆放方法数为_________.(用数字作答)
2.(2022·重庆·高二阶段练习)从1,3,5,7中任取两个数,从0,2,4,6中任取两个数,组成没有重复数字的四位数.
(1)可以组成多少个四位偶数?
(2)可以组成多少个两个奇数数字相邻的四位数?(所有结果均用数值表示)
3.(2022·山东烟台·高二期中)(1)将标有1,2,3,4,5号的小球依次放入标号为1,2,3,4,5的五个方格,每个方格一个小球,若3号小球不放在3号方格,则共有多少种不同的放法?
(2)由数字1,2,3,4,5可以组成多少个没有重复数字,并且比34000大的正整数?
角度2:与几何有关的问题
典型例题
例题1.(2022·湖北咸宁·高二期末)方形是中国古代城市建筑最基本的形态,它体现的是中国文化中以纲常伦理为代表的社会生活规则,中国古代的建筑家善于使用木制品和竹制品制作各种方形建筑.如图,用大小相同的竹棍构造一个大正方体(由 SKIPIF 1 < 0 个大小相同的小正方体构成),若一只蚂蚁从 SKIPIF 1 < 0 点出发,沿着竹棍到达 SKIPIF 1 < 0 点,则蚂蚁选择的不同的最短路径共有( )
A. SKIPIF 1 < 0 种B. SKIPIF 1 < 0 种
C. SKIPIF 1 < 0 种D. SKIPIF 1 < 0 种
例题2.(多选)(2022·全国·高二期末)在某城市中, SKIPIF 1 < 0 , SKIPIF 1 < 0 两地之间有如图所示的道路网.甲随机沿路网选择一条最短路径,从 SKIPIF 1 < 0 地出发去往 SKIPIF 1 < 0 地.下列结论正确的有( )
A.不同的路径共有31条
B.不同的路径共有61条
C.若甲途经 SKIPIF 1 < 0 地,则不同的路径共有18条
D.若甲途经 SKIPIF 1 < 0 地,且不经过 SKIPIF 1 < 0 地,则不同的路径共有9条
同类题型归类练
1.(2022·山东潍坊·高二阶段练习)如图所示,若从正六边形 SKIPIF 1 < 0 的六个顶点中任取三个顶点构成一个三角形,则直角三角形的个数为( )
A.6个B.8个C.12个D.16个
2.(2022·浙江省杭州第二中学高二期中)将一些小于10的正整数填入如下 SKIPIF 1 < 0 的方格 SKIPIF 1 < 0 中,使得每行和每列中的数的乘积都等于10,共有__________种不同的填法.
3.(2022·江苏南通·高二期中)将某商场某区域的行走路线图抽象为一个 SKIPIF 1 < 0 的长方体框架(如图),小红欲从A处行走至B处,则小红行走路程最近的路线共有_________.(结果用数字作答)
角度3:涂色问题
典型例题
例题1.(2022·全国·高二单元测试)用红、黄、蓝3种颜色给如图所示的6个相连的圆涂色,若每种颜色只能涂2个圆,且相邻2个圆所涂颜色不能相同,则不同的涂法种数为( )
A.24B.30C.36D.42
例题2.(2022·全国·高三专题练习(文))汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝.如图所示的弦图中,由四个全等的直角三角形和一个正方形构成.现有六种不同的颜色可供涂色,要求相邻的区域不能用同一种颜色,则不同的涂色方案有( )
A. SKIPIF 1 < 0 B.1020C.1180D.1560
例题3.(2022·全国·高三专题练习)如图,有 SKIPIF 1 < 0 、 SKIPIF 1 < 0 、 SKIPIF 1 < 0 、 SKIPIF 1 < 0 四块区域需要植入花卉,现有 SKIPIF 1 < 0 种不同花卉可供选择,要求相邻区域植入不同花卉,不同的植入方法有( )
A. SKIPIF 1 < 0 种B. SKIPIF 1 < 0 种C. SKIPIF 1 < 0 种D. SKIPIF 1 < 0 种
例题4.(2022·江苏江苏·高二阶段练习)如图,一个地区分为5个行政区域,现给地图涂色,要求相邻区域不得使用同一颜色.现有5种颜色可供选择,则不同的涂色方法的有( )种
A.540B.360C.300D.420
同类题型归类练
1.(2022·全国·高二期末)现有红、黄、蓝三种颜色,对如图所示的正五角星的内部涂色(分割成六个不同区域),要求每个区域涂一种颜色且相邻部分(有公共边的两个区域)的颜色不同,则不同的涂色方法有( )
A.48种B.64种C.96种D.144种
2.(2022·黑龙江齐齐哈尔·高二期末)学习涂色能锻炼手眼协调能力,更能提高审美能力.现有四种不同的颜色:湖蓝色、米白色、橄榄绿、薄荷绿,欲给小房子中的四个区域涂色,要求相邻区域不涂同一颜色,且橄榄绿与薄荷绿也不涂在相邻的区域内,则共有______种不同的涂色方法.
3.(2022·河南·郑州四中高二阶段练习(理))现用5种颜色,给图中的5个区域涂色,要求相邻的区域不能涂同一种颜色,则不同的涂色方法共有_______种.
4.(2022·重庆市万州第二高级中学高二阶段练习)给图中A,B,C,D,E五个区域填充颜色,每个区域只填充一种颜色,且相邻的区域不同色.若有四种颜色可供选择,则共有_________种不同的方案.
第四部分:高考真题感悟
1.(2020·全国·高考真题(文))如图,将钢琴上的12个键依次记为a1,a2,…,a12.设1≤i
相关试卷
这是一份2024年新高考数学一轮复习达标检测第54讲分类加法计数原理与分步乘法计数原理(教师版),共11页。
这是一份第01讲 分类加法计数原理与分步乘法计数原理 (精练)-备战2024年高考数学一轮复习精讲精练高效测(新教材新高考),文件包含第01讲分类加法计数原理与分步乘法计数原理精练原卷版docx、第01讲分类加法计数原理与分步乘法计数原理精练解析版docx等2份试卷配套教学资源,其中试卷共17页, 欢迎下载使用。
这是一份第01讲 分类加法计数原理与分步乘法计数原理 (精讲)-备战2024年高考数学一轮复习精讲精练高效测(新教材新高考),文件包含第01讲分类加法计数原理与分步乘法计数原理精讲原卷版docx、第01讲分类加法计数原理与分步乘法计数原理精讲解析版docx等2份试卷配套教学资源,其中试卷共31页, 欢迎下载使用。