所属成套资源:新高考数学一轮复习讲义 (含解析)
新高考数学一轮复习讲义第7章 §7.6 空间向量的概念与运算(含解析)
展开
这是一份新高考数学一轮复习讲义第7章 §7.6 空间向量的概念与运算(含解析),共25页。
知识梳理
1.空间向量的有关概念
2.空间向量的有关定理
(1)共线向量定理:对任意两个空间向量a,b(b≠0),a∥b的充要条件是存在实数λ,使a=λb.
(2)共面向量定理:如果两个向量a,b不共线,那么向量p与向量a,b共面的充要条件是存在唯一的有序实数对(x,y),使p=xa+yb.
(3)空间向量基本定理
如果三个向量a,b,c不共面,那么对任意一个空间向量p,存在唯一的有序实数组(x,y,z),使得p=xa+yb+zc,{a,b,c}叫做空间的一个基底.
3.空间向量的数量积及运算律
(1)数量积
非零向量a,b的数量积a·b=|a||b|cs〈a,b〉.
(2)空间向量的坐标表示及其应用
设a=(a1,a2,a3),b=(b1,b2,b3).
4.空间位置关系的向量表示
(1)直线的方向向量:如果表示非零向量a的有向线段所在直线与直线l平行或重合,则称此向量a为直线l的方向向量.
(2)平面的法向量:直线l⊥α,取直线l的方向向量a,则向量a为平面α的法向量.
(3)空间位置关系的向量表示
常用结论
1.在平面中,A,B,C三点共线的充要条件是:eq \(OA,\s\up6(→))=xeq \(OB,\s\up6(→))+yeq \(OC,\s\up6(→))(其中x+y=1),O为平面内任意一点.
2.在空间中,P,A,B,C四点共面的充要条件是:eq \(OP,\s\up6(→))=xeq \(OA,\s\up6(→))+yeq \(OB,\s\up6(→))+zeq \(OC,\s\up6(→))(其中x+y+z=1),O为空间中任意一点.
思考辨析
判断下列结论是否正确(请在括号中打“√”或“×”)
(1)直线的方向向量是唯一确定的.( × )
(2)若直线a的方向向量和平面α的法向量平行,则a∥α.( × )
(3)在空间直角坐标系中,在Oyz平面上的点的坐标一定是(0,b,c).( √ )
(4)若a·b
相关学案
这是一份新高考数学一轮复习讲义第6章 §6.1 数列的概念(含解析),共18页。
这是一份新高考数学一轮复习讲义第5章 §5.1 平面向量的概念及线性运算(含解析),共19页。
这是一份新高考数学一轮复习讲义第3章 §3.1 导数的概念及其意义、导数的运算(含解析),共19页。