所属成套资源:新高考数学一轮复习学案 (含解析)
新高考数学一轮复习学案 第1章 §1.2 充分条件与必要条件(含解析)
展开
这是一份新高考数学一轮复习学案 第1章 §1.2 充分条件与必要条件(含解析),共10页。学案主要包含了充分、必要条件的判定,充分、必要条件的应用等内容,欢迎下载使用。
充分条件、必要条件与充要条件的概念
微思考
若条件p,q以集合的形式出现,即A={x|p(x)},B={x|q(x)},则由A⊆B可得,p是q的充分条件,请写出集合A,B的其他关系对应的条件p,q的关系.
提示 若AB,则p是q的充分不必要条件;
若A⊇B,则p是q的必要条件;
若AB,则p是q的必要不充分条件;
若A=B,则p是q的充要条件;
若A⃘B且A⊉B,则p是q的既不充分也不必要条件.
题组一 思考辨析
1.判断下列结论是否正确(请在括号中打“√”或“×”)
(1)当q是p的必要条件时,p是q的充分条件.( √ )
(2)已知集合A,B,则A∪B=A∩B的充要条件是A=B.( √ )
(3)q不是p的必要条件时,“p⇏q”成立.( √ )
(4)若p⇒q,则p是q的充分不必要条件.( × )
题组二 教材改编
2.“x-3=0”是“(x-3)(x-4)=0”的____________条件.(选填“充分不必要”“必要不充分”“充要”“既不充分也不必要”)
答案 充分不必要
3.“sin α=sin β”是“α=β”的__________条件.(选填“充分不必要”“必要不充分”“充要”“既不充分也不必要”)
答案 必要不充分
4.函数f(x)=x2+mx+1的图象关于直线x=1对称的充要条件是________.
答案 m=-2
题组三 易错自纠
5.设x>0,y∈R,则“x>y”是“x>|y|”的( )
A.充要条件
B.充分不必要条件
C.必要不充分条件
D.既不充分也不必要条件
答案 C
解析 由x>y推不出x>|y|,由x>|y|能推出x>y,所以“x>y”是“x>|y|”的必要不充分条件.
6.已知p:x>a是q:24.
当a=1,b=5时,满足a+b>4,ab>4,但不满足a>2,b>2,所以a+b>4,ab>4⇏a>2,b>2,
故“a>2,b>2”是“a+b>4,ab>4”的充分不必要条件.
思维升华 充分条件、必要条件的两种判定方法
(1)定义法:根据p⇒q,q⇒p进行判断,适用于定义、定理判断性问题.
(2)集合法:根据p,q对应的集合之间的包含关系进行判断,多适用于条件中涉及参数范围的推断问题.
跟踪训练1 (1)已知a,b,c,d是实数,则“ad=bc”是“a,b,c,d成等比数列”的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
答案 B
解析 当a=b=c=d=0时,ad=bc,但a,b,c,d不成等比数列,
当a,b,c,d成等比数列时,ad=bc,则“ad=bc”是“a,b,c,d成等比数列”的必要不充分条件.
(2)设λ∈R,则“λ=-3”是“直线2λx+(λ-1)y=1与直线6x+(1-λ)y=4平行”的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
答案 A
解析 若直线2λx+(λ-1)y=1与直线6x+(1-λ)y=4平行,
则2λ(1-λ)-6(λ-1)=0,
解得λ=1或λ=-3,
经检验λ=1或λ=-3时两直线平行,故选A.
题型二 充分、必要条件的应用
例2 已知集合A={x|x2-8x-20≤0},非空集合B={x|1-m≤x≤1+m}.若x∈A是x∈B的必要条件,求m的取值范围.
解 由x2-8x-20≤0,得-2≤x≤10,
∴A={x|-2≤x≤10}.
由x∈A是x∈B的必要条件,知B⊆A.
则eq \b\lc\{\rc\ (\a\vs4\al\c1(1-m≤1+m,,1-m≥-2, ∴0≤m≤3.,1+m≤10,))
∴当0≤m≤3时,x∈A是x∈B的必要条件,
即所求m的取值范围是[0,3].
若将本例中条件改为“若x∈A是x∈B的必要不充分条件”,求m的取值范围.
解 由x∈A是x∈B的必要不充分条件,知BA,
∴eq \b\lc\{\rc\ (\a\vs4\al\c1(1-m≤1+m,,1-m≥-2,,1+m-2,,1+m≤10,))
解得0≤m≤3或0≤m
相关学案
这是一份高考数学一轮复习第1章第2节充分条件与必要条件学案,共8页。学案主要包含了教材概念·结论·性质重现,基本技能·思想·活动经验等内容,欢迎下载使用。
这是一份(新高考)高考数学一轮复习学案1.2《充分条件与必要条件、全称量词与存在量词》(含详解),共10页。学案主要包含了知识梳理,教材衍化等内容,欢迎下载使用。
这是一份(新高考)高考数学一轮考点复习1.2《充分条件与必要条件、全称量词与存在量词》学案 (含详解),共14页。