![新高考数学一轮复习学案 第4章 §4.4 三角函数的图象与性质(含解析)第1页](http://www.enxinlong.com/img-preview/3/3/16093679/0-1724422548866/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![新高考数学一轮复习学案 第4章 §4.4 三角函数的图象与性质(含解析)第2页](http://www.enxinlong.com/img-preview/3/3/16093679/0-1724422548932/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![新高考数学一轮复习学案 第4章 §4.4 三角函数的图象与性质(含解析)第3页](http://www.enxinlong.com/img-preview/3/3/16093679/0-1724422548958/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
所属成套资源:新高考数学一轮复习学案 (含解析)
新高考数学一轮复习学案 第4章 §4.4 三角函数的图象与性质(含解析)
展开
这是一份新高考数学一轮复习学案 第4章 §4.4 三角函数的图象与性质(含解析),共15页。
1.用“五点法”作正弦函数和余弦函数的简图
(1)在正弦函数y=sin x,x∈[0,2π]的图象中,五个关键点是:(0,0),eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2),1)),(π,0),eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(3π,2),-1)),(2π,0).
(2)在余弦函数y=cs x,x∈[0,2π]的图象中,五个关键点是:(0,1),eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2),0)),(π,-1),eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(3π,2),0)),(2π,1).
2.正弦、余弦、正切函数的图象与性质(下表中k∈Z)
微思考
1.正(余)弦曲线相邻两条对称轴之间的距离是多少?相邻两个对称中心的距离呢?
提示 正(余)弦曲线相邻两条对称轴之间的距离是半个周期;相邻两个对称中心的距离也为半个周期.
2.函数f(x)=Asin(ωx+φ)(A≠0,ω≠0)是奇函数,偶函数的充要条件分别是什么?
提示 (1)f(x)为偶函数的充要条件是φ=eq \f(π,2)+kπ(k∈Z);
(2)f(x)为奇函数的充要条件是φ=kπ(k∈Z).
题组一 思考辨析
1.判断下列结论是否正确(请在括号中打“√”或“×”)
(1)正切函数y=tan x在定义域内是增函数.( × )
(2)已知y=ksin x+1,x∈R,则y的最大值为k+1.( × )
(3)y=sin|x|是偶函数.( √ )
(4)由sineq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,6)+\f(2π,3)))=sin eq \f(π,6)知,eq \f(2π,3)是正弦函数y=sin x(x∈R)的一个周期.( × )
题组二 教材改编
2.函数f(x)=-2taneq \b\lc\(\rc\)(\a\vs4\al\c1(2x+\f(π,6)))的定义域是( )
A.eq \b\lc\{\rc\}(\a\vs4\al\c1(x∈R\b\lc\|\rc\ (\a\vs4\al\c1(x≠\f(π,6)))))
B.eq \b\lc\{\rc\}(\a\vs4\al\c1(x∈R\b\lc\|\rc\ (\a\vs4\al\c1(x≠-\f(π,12)))))
C.eq \b\lc\{\rc\}(\a\vs4\al\c1(x∈R\b\lc\|\rc\ (\a\vs4\al\c1(x≠kπ+\f(π,6)k∈Z))))
D.eq \b\lc\{\rc\}(\a\vs4\al\c1(x∈R\b\lc\|\rc\ (\a\vs4\al\c1(x≠\f(kπ,2)+\f(π,6)k∈Z))))
答案 D
解析 由2x+eq \f(π,6)≠kπ+eq \f(π,2),k∈Z,
得x≠eq \f(kπ,2)+eq \f(π,6),k∈Z.
3.下列函数中,是奇函数的是( )
A.y=|cs x+1| B.y=1-sin x
C.y=-3sin(2x+π) D.y=1-tan x
答案 C
解析 选项A中的函数是偶函数,选项B,D中的函数既不是奇函数,也不是偶函数;因为y=-3sin(2x+π)=3sin 2x,所以是奇函数,选C.
4.函数f(x)=cseq \b\lc\(\rc\)(\a\vs4\al\c1(2x+\f(π,4)))的最小正周期是________.
答案 π
题组三 易错自纠
5.(多选)已知函数f(x)=sineq \b\lc\(\rc\)(\a\vs4\al\c1(x-\f(π,2)))(x∈R),下列结论正确的是( )
A.函数f(x)的最小正周期为2π
B.函数f(x)在区间eq \b\lc\[\rc\](\a\vs4\al\c1(0,\f(π,2)))上单调递增
C.函数f(x)的图象关于直线x=0对称
D.函数f(x)是奇函数
答案 ABC
解析 由题意,可得f(x)=-cs x,
对于选项A,T=eq \f(2π,1)=2π,所以选项A正确;
对于选项B,y=cs x在eq \b\lc\[\rc\](\a\vs4\al\c1(0,\f(π,2)))上单调递减,所以函数f(x)在区间eq \b\lc\[\rc\](\a\vs4\al\c1(0,\f(π,2)))上单调递增,所以选项B正确;
对于选项C,f(-x)=-cs(-x)=-cs x=f(x),所以函数是偶函数,所以其图象关于直线x=0对称,所以选项C正确;选项D错误.故选ABC.
6.函数y=taneq \b\lc\(\rc\)(\a\vs4\al\c1(x+\f(π,4)))的图象的对称中心是________.
答案 eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(kπ,2)-\f(π,4),0)),k∈Z
解析 由x+eq \f(π,4)=eq \f(kπ,2),k∈Z,
得x=eq \f(kπ,2)-eq \f(π,4),k∈Z,
∴对称中心是eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(kπ,2)-\f(π,4),0)),k∈Z.
题型一 三角函数的定义域和值域
例1 (1)函数y=eq \r(sin x-cs x)的定义域为________.
答案 eq \b\lc\[\rc\](\a\vs4\al\c1(2kπ+\f(π,4),2kπ+\f(5π,4)))(k∈Z)
解析 要使函数有意义,必须使sin x-cs x≥0.利用图象,在同一坐标系中画出[0,2π]上y=sin x和y=cs x的图象,如图所示.
在[0,2π]内,满足sin x=cs x的x为eq \f(π,4),eq \f(5π,4),再结合正弦、余弦函数的周期是2π,所以原函数的定义域为eq \b\lc\{\rc\}(\a\vs4\al\c1(x\b\lc\|\rc\ (\a\vs4\al\c1(2kπ+\f(π,4)≤x≤2kπ+\f(5π,4),k∈Z)))).
(2)当x∈eq \b\lc\[\rc\](\a\vs4\al\c1(\f(π,6),\f(7π,6)))时,函数y=3-sin x-2cs2x的值域为________.
答案 eq \b\lc\[\rc\](\a\vs4\al\c1(\f(7,8),2))
解析 因为x∈eq \b\lc\[\rc\](\a\vs4\al\c1(\f(π,6),\f(7π,6))),所以sin x∈eq \b\lc\[\rc\](\a\vs4\al\c1(-\f(1,2),1)).
又y=3-sin x-2cs2x=3-sin x-2(1-sin2x)
=2eq \b\lc\(\rc\)(\a\vs4\al\c1(sin x-\f(1,4)))2+eq \f(7,8),
所以当sin x=eq \f(1,4)时,ymin=eq \f(7,8),当sin x=eq \b\lc\ \rc\ (\a\vs4\al\c1(-\f(1,2)))或sin x=1时,ymax=2.即函数的值域为eq \b\lc\[\rc\](\a\vs4\al\c1(\f(7,8),2)).
思维升华 求解三角函数的值域(最值)常见到以下几种类型
(1)形如y=asin x+bcs x+c的三角函数化为y=Asin(ωx+φ)+c的形式,再求值域(最值).
(2)形如y=asin2x+bsin x+c的三角函数,可先设sin x=t,化为关于t的二次函数求值域(最值).
(3)形如y=asin xcs x+b(sin x±cs x)+c的三角函数,可先设t=sin x±cs x,化为关于t的二次函数求值域(最值).
跟踪训练1 (1)函数f(x)=ln(cs x)的定义域为( )
A.eq \b\lc\(\rc\)(\a\vs4\al\c1(kπ-\f(π,2),kπ+\f(π,2))),k∈Z
B.(kπ,kπ+π),k∈Z
C.eq \b\lc\(\rc\)(\a\vs4\al\c1(2kπ-\f(π,2),2kπ+\f(π,2))),k∈Z
D.(2kπ,2kπ+π),k∈Z
答案 C
解析 由题意知,cs x>0,
∴2kπ-eq \f(π,2)
相关学案
这是一份新高考数学一轮复习讲义第4章 §4.5 三角函数的图象与性质(含解析),共22页。
这是一份高考数学一轮复习第4章第5课时三角函数的图象与性质学案,共23页。
这是一份高考数学一轮复习第4章第3节三角函数的图象与性质学案,共13页。
![文档详情页底部广告位](http://www.enxinlong.com/img/images/257d7bc79dd514896def3dc0b2e3f598.jpg)