所属成套资源:新高考数学一轮复习学案 (含解析)
新高考数学一轮复习学案第3章第1讲 函数及其表示(含解析)
展开
这是一份新高考数学一轮复习学案第3章第1讲 函数及其表示(含解析),共16页。学案主要包含了知识梳理,教材衍化等内容,欢迎下载使用。
一、知识梳理
1.函数的概念
2.函数的有关概念
(1)函数的定义域、值域
在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合B的子集.
(2)函数的三要素:定义域、值域和对应关系.
(3)函数的表示法
表示函数的常用方法有:解析法、图象法、列表法.
[注意] 函数图象的特征:与x轴垂直的直线与其最多有一个公共点.利用这个特征可以判断一个图形能否作为一个函数的图象.
3.分段函数
若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.
[注意] 分段函数是一个函数,而不是几个函数,分段函数的定义域是各段定义域的并集,值域是各段值域的并集.
常用结论
几种常见函数的定义域
(1)f(x)为分式型函数时,定义域为使分母不为零的实数集合.
(2)f(x)为偶次根式型函数时,定义域为使被开方式非负的实数的集合.
(3)f(x)为对数式时,函数的定义域是真数为正数、底数为正且不为1的实数集合.
(4)若f(x)=x0,则定义域为{x|x≠0}.
(5)指数函数的底数大于0且不等于1.
(6)正切函数y=tan x的定义域为eq \b\lc\{\rc\}(\a\vs4\al\c1(x|x≠kπ+\f(π,2),k∈Z)).
二、教材衍化
1.下列函数中,与函数y=x+1是相等函数的是( )
A.y=(eq \r(x+1))2 B.y=eq \r(3,x3)+1
C.y=eq \f(x2,x)+1 D.y=eq \r(x2)+1
答案:B
2.函数y=f(x)的图象如图所示,那么f(x)的定义域是________;值域是________;其中只有唯一的x值与之对应的y值的范围是________.
答案:[-3,0]∪[2,3] [1,5] [1,2)∪(4,5]
3.函数y=eq \r(x-2)·eq \r(x+2)的定义域是________.
解析:eq \b\lc\{(\a\vs4\al\c1(x-2≥0,,x+2≥0,))⇒x≥2.
答案:[2,+∞)
4.已知函数f(x)=eq \b\lc\{(\a\vs4\al\c1(x+1,x≥0,,x2,x0,))则f(x+1)-9≤0的解集为________.
解析:因为f(x)=eq \b\lc\{(\a\vs4\al\c1(2-x+1,x≤0,,-\r(x),x>0,))
所以当x+1≤0时,eq \b\lc\{(\a\vs4\al\c1(x≤-1,,2-(x+1)-8≤0,))
解得-4≤x≤-1;
当x+1>0时,eq \b\lc\{(\a\vs4\al\c1(x>-1,,-\r(x+1)-9≤0,))
解得x>-1.
综上,x≥-4,即f(x+1)-9≤0的解集为[-4,+∞).
答案:[-4,+∞)
4.(创新型)设函数f(x)的定义域为D,若对任意的x∈D,都存在y∈D,使得f(y)=-f(x)成立,则称函数f(x)为“美丽函数”,下列所给出的几个函数:
①f(x)=x2;②f(x)=eq \f(1,x-1);
③f(x)=ln(2x+3);④f(x)=2sin x-1.
其中是“美丽函数”的序号有________.
解析:由已知,在函数定义域内,对任意的x都存在着y,使x所对应的函数值f(x)与y所对应的函数值f(y)互为相反数,即f(y)=-f(x).故只有当函数的值域关于原点对称时才会满足“美丽函数”的条件.
①中函数的值域为[0,+∞),值域不关于原点对称,故①不符合题意;
②中函数的值域为(-∞,0)∪(0,+∞),值域关于原点对称,故②符合题意;
③中函数的值域为(-∞,+∞),值域关于原点对称,故③符合题意;
④中函数f(x)=2sin x-1的值域为[-3,1],不关于原点对称,故④不符合题意.故本题正确答案为②③.
答案:②③
函数
两集合A,B
A,B是两个非空数集
对应关系f:A→B
如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)与之对应
名称
称f:A→B为从集合A到集合B的一个函数
记法
y=f(x),x∈A
方法
解读
适合题型
直接法
构造使解析式有意义的不等式(组)求解
已知函数的具体表达式,求f(x)的定义域
转移法
若y=f(x)的定义域为(a,b),则解不等式a
相关学案
这是一份2024年高考数学(理)一轮复习讲义 第2章 第1讲 函数及其表示,共15页。
这是一份高考数学一轮复习第2章第1节函数及其表示学案,共8页。学案主要包含了教材概念·结论·性质重现,基本技能·思想·活动经验等内容,欢迎下载使用。
这是一份高考数学一轮复习第2章函数导数及其应用第1讲函数及其表示学案,共10页。