|学案下载
终身会员
搜索
    上传资料 赚现金
    新高考数学一轮复习学案第4章第4讲 第1课时 利用导数证明不等式(含解析)
    立即下载
    加入资料篮
    新高考数学一轮复习学案第4章第4讲 第1课时 利用导数证明不等式(含解析)01
    新高考数学一轮复习学案第4章第4讲 第1课时 利用导数证明不等式(含解析)02
    新高考数学一轮复习学案第4章第4讲 第1课时 利用导数证明不等式(含解析)03
    还剩8页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    新高考数学一轮复习学案第4章第4讲 第1课时 利用导数证明不等式(含解析)

    展开
    这是一份新高考数学一轮复习学案第4章第4讲 第1课时 利用导数证明不等式(含解析),共11页。


    考点一 移项补充构造法(综合型)
    (2020·江西赣州模拟)已知函数f(x)=1-eq \f(ln x,x),g(x)=eq \f(ae,ex)+eq \f(1,x)-bx,若曲线y=f(x)与曲线y=g(x)的一个公共点是A(1,1),且在点A处的切线互相垂直.
    (1)求a,b的值;
    (2)证明:当x≥1时,f(x)+g(x)≥eq \f(2,x).
    【解】 (1)因为f(x)=1-eq \f(ln x,x),
    所以f′(x)=eq \f(ln x-1,x2),f′(1)=-1.
    因为g(x)=eq \f(ae,ex)+eq \f(1,x)-bx,
    所以g′(x)=-eq \f(ae,ex)-eq \f(1,x2)-b.
    因为曲线y=f(x)与曲线y=g(x)的一个公共点是A(1,1),且在点A处的切线互相垂直,
    所以g(1)=1,且f′(1)·g′(1)=-1,
    所以g(1)=a+1-b=1,g′(1)=-a-1-b=1,解得a=-1,b=-1.
    (2)证明:由(1)知,g(x)=-eq \f(e,ex)+eq \f(1,x)+x,
    则f(x)+g(x)≥eq \f(2,x)⇔1-eq \f(ln x,x)-eq \f(e,ex)-eq \f(1,x)+x≥0.
    令h(x)=1-eq \f(ln x,x)-eq \f(e,ex)-eq \f(1,x)+x(x≥1),
    则h(1)=0,h′(x)=-eq \f(1-ln x,x2)+eq \f(e,ex)+eq \f(1,x2)+1=eq \f(ln x,x2)+eq \f(e,ex)+1.
    因为x≥1,所以h′(x)=eq \f(ln x,x2)+eq \f(e,ex)+1>0,
    所以h(x)在[1,+∞)上单调递增,所以h(x)≥h(1)=0,即1-eq \f(ln x,x)-eq \f(e,ex)-eq \f(1,x)+x≥0,
    所以当x≥1时,f(x)+g(x)≥eq \f(2,x).
    eq \a\vs4\al()
    待证不等式的两边含有同一个变量时,一般地,可以直接构造“左减右”的函数,利用导数研究其单调性,借助所构造函数的单调性即可得证.
    已知函数f(x)=ax+xln x在x=e-2(e为自然对数的底数)处取得极小值.
    (1)求实数a的值;
    (2)当x>1时,求证:f(x)>3(x-1).
    解:(1)因为f(x)=ax+xln x,
    所以f′(x)=a+ln x+1,
    因为函数f(x)在x=e-2处取得极小值,
    所以f′(e-2)=0,即a+ln e-2+1=0,
    所以a=1,所以f′(x)=ln x+2.
    当f′(x)>0时,x>e-2;
    当f′(x)<0时,0所以f(x)在(0,e-2)上单调递减,在(e-2,+∞)上单调递增,
    所以f(x)在x=e-2处取得极小值,符合题意,所以a=1.
    (2)证明:由(1)知a=1,所以f(x)=x+xln x.
    令g(x)=f(x)-3(x-1),
    即g(x)=xln x-2x+3(x>0).
    g′(x)=ln x-1,由g′(x)=0,得x=e.
    由g′(x)>0,得x>e;由g′(x)<0,得0所以g(x)在(0,e)上单调递减,在(e,+∞)上单调递增,
    所以g(x)在(1,+∞)上的最小值为g(e)=3-e>0.
    于是在(1,+∞)上,都有g(x)≥g(e)>0,
    所以f(x)>3(x-1).
    考点二 隔离分析法(综合型)
    (2020·福州模拟)已知函数f(x)=eln x-ax(a∈R).
    (1)讨论f(x)的单调性;
    (2)当a=e时,证明:xf(x)-ex+2ex≤0.
    【解】 (1)f′(x)=eq \f(e,x)-a(x>0),
    ①若a≤0,则f′(x)>0,f(x)在(0,+∞)上单调递增;
    ②若a>0,则当00,当x>eq \f(e,a)时,f′(x)<0,
    故f(x)在eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(e,a)))上单调递增,在eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(e,a),+∞))上单调递减.
    (2)证明:法一:因为x>0,所以只需证f(x)≤eq \f(ex,x)-2e,
    当a=e时,由(1)知,f(x)在(0,1)上单调递增,在(1,+∞)上单调递减,
    所以f(x)max=f(1)=-e.
    记g(x)=eq \f(ex,x)-2e(x>0),
    则g′(x)=eq \f((x-1)ex,x2),
    所以当0当x>1时,g′(x)>0,g(x)单调递增,
    所以g(x)min=g(1)=-e.
    综上,当x>0时,f(x)≤g(x),
    即f(x)≤eq \f(ex,x)-2e,即xf(x)-ex+2ex≤0.
    法二:由题意知,即证exln x-ex2-ex+2ex≤0,
    从而等价于ln x-x+2≤eq \f(ex,ex).
    设函数g(x)=ln x-x+2,则g′(x)=eq \f(1,x)-1.
    所以当x∈(0,1)时,g′(x)>0,当x∈(1,+∞)时,g′(x)<0,
    故g(x)在(0,1)上单调递增,在(1,+∞)上单调递减,
    从而g(x)在(0,+∞)上的最大值为g(1)=1.
    设函数h(x)=eq \f(ex,ex),则h′(x)=eq \f(ex(x-1),ex2).
    所以当x∈(0,1)时,h′(x)<0,当x∈(1,+∞)时,h′(x)>0,
    故h(x)在(0,1)上单调递减,在(1,+∞)上单调递增,
    从而h(x)在(0,+∞)上的最小值为h(1)=1.
    综上,当x>0时,g(x)≤h(x),即xf(x)-ex+2ex≤0.
    eq \a\vs4\al()
    (1)在证明不等式中,若无法转化为一个函数的最值问题,则可以考虑转化为两个函数的最值问题.
    (2)在证明过程中,等价转化是关键,此处f(x)min>g(x)max恒成立.从而f(x)>g(x),但此处f(x)与g(x)取到最值的条件不是同一个“x的值”.
    已知f(x)=xln x.
    (1)求函数f(x)在[t,t+2](t>0)上的最小值;
    (2)证明:对一切x∈(0,+∞),都有ln x>eq \f(1,ex)-eq \f(2,ex)成立.
    解:(1)由f(x)=xln x,x>0,得f′(x)=ln x+1,
    令f′(x)=0,得x=eq \f(1,e).
    当x∈eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(1,e)))时,f′(x)<0,f(x)单调递减;
    当x∈eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,e),+∞))时,f′(x)>0,f(x)单调递增.
    ①当0f(x)min=feq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,e)))=-eq \f(1,e);
    ②当eq \f(1,e)≤t所以f(x)min=eq \b\lc\{(\a\vs4\al\c1(-\f(1,e),0(2)证明:问题等价于证明xln x>eq \f(x,ex)-eq \f(2,e)(x∈(0,+∞)).
    由(1)可知f(x)=xln x(x∈(0,+∞))的最小值是-eq \f(1,e),
    当且仅当x=eq \f(1,e)时取到.
    设m(x)=eq \f(x,ex)-eq \f(2,e)(x∈(0,+∞)),
    则m′(x)=eq \f(1-x,ex),
    由m′(x)<0得x>1时,m(x)为减函数,
    由m′(x)>0得0易知m(x)max=m(1)=-eq \f(1,e),当且仅当x=1时取到.
    从而对一切x∈(0,+∞),xln x≥-eq \f(1,e)≥eq \f(x,ex)-eq \f(2,e),两个等号不能同时取到,即证对一切x∈(0,+∞)都有ln x>eq \f(1,ex)-eq \f(2,ex)成立.
    考点三 特征分析法(综合型)
    已知函数f(x)=ax-ln x-1.
    (1)若f(x)≥0恒成立,求a的最小值;
    (2)证明:eq \f(e-x,x)+x+ln x-1≥0.
    【解】 (1)由题意知x>0,
    所以f(x)≥0等价于a≥eq \f(ln x+1,x).
    令g(x)=eq \f(ln x+1,x),则g′(x)=eq \f(-ln x,x2),
    所以当x∈(0,1)时,g′(x)>0;当x∈(1,+∞)时,g′(x)<0.
    则g(x)在(0,1)上单调递增,在(1,+∞)上单调递减,所以g(x)max=g(1)=1,则a≥1,
    所以a的最小值为1.
    (2)证明:当a=1时,由(1)得x≥ln x+1.
    即t≥ln t+1.
    令eq \f(e-x,x)=t,则-x-ln x=ln t,
    所以eq \f(e-x,x)≥-x-ln x+1,
    即eq \f(e-x,x)+x+ln x-1≥0.
    eq \a\vs4\al()
    这种方法往往要在前面问题中证明出某个不等式,在后续的问题中应用前面的结论,呈现出层层递进的特点.
    已知函数f(x)=eq \f(ln x+1,x).
    (1)求函数f(x)的单调区间和极值;
    (2)若对任意的x>1,恒有ln(x-1)+k+1≤kx成立,求k的取值范围.
    解:(1)f(x)的定义域是(0,+∞),
    f′(x)=-eq \f(ln x,x2),由f′(x)=0⇒x=1,列表如下:
    因此函数f(x)的单调递增区间为(0,1),单调递减区间为(1,+∞),极大值为f(1)=1,无极小值.
    (2)因为x>1,
    ln(x-1)+k+1≤kx⇔eq \f(ln(x-1)+1,x-1)≤k⇔f(x-1)≤k,
    所以f(x-1)max≤k,
    所以k≥1,所以k的取值范围为[1,+∞).
    考点四 换元构造法(综合型)
    已知函数f(x)=ln x-ax(x>0),a为常数,若函数f(x)有两个零点x1,x2(x1≠x2).求证:x1x2>e2.
    【证明】 不妨设x1>x2>0,
    因为ln x1-ax1=0,ln x2-ax2=0,
    所以ln x1+ln x2=a(x1+x2),ln x1-ln x2=a(x1-x2),所以eq \f(ln x1-ln x2,x1-x2)=a,
    欲证x1x2>e2,即证ln x1+ln x2>2.
    因为ln x1+ln x2=a(x1+x2),
    所以即证a>eq \f(2,x1+x2),
    所以原问题等价于证明eq \f(ln x1-ln x2,x1-x2)>eq \f(2,x1+x2),
    即lneq \f(x1,x2)>eq \f(2(x1-x2),x1+x2),
    令c=eq \f(x1,x2)(c>1),
    则不等式变为ln c>eq \f(2(c-1),c+1).
    令h(c)=ln c-eq \f(2(c-1),c+1),c>1,
    所以h′(c)=eq \f(1,c)-eq \f(4,(c+1)2)=eq \f((c-1)2,c(c+1)2)>0,
    所以h(c)在(1,+∞)上单调递增,
    所以h(c)>h(1)=ln 1-0=0,
    即ln c-eq \f(2(c-1),c+1)>0(c>1),因此原不等式x1x2>e2得证.
    eq \a\vs4\al()
    换元法构造函数证明不等式的基本思路是直接消掉参数a,再结合所证问题,巧妙引入变量c=eq \f(x1,x2),从而构造相应的函数.其解题要点为:
    已知函数f(x)=ln x-eq \f(1,2)ax2+x,a∈R.
    (1)当a=0时,求函数f(x)的图象在(1,f(1))处的切线方程;
    (2)若a=-2,正实数x1,x2满足f(x1)+f(x2)+x1x2=0,求证:x1+x2≥eq \f(\r(5)-1,2).
    解:(1)当a=0时,f(x)=ln x+x,则f(1)=1,所以切点为(1,1),又因为f′(x)=eq \f(1,x)+1,所以切线的斜率k=f′(1)=2,故切线方程为y-1=2(x-1),即2x-y-1=0.
    (2)证明:当a=-2时,f(x)=ln x+x2+x(x>0).
    由f(x1)+f(x2)+x1x2=0,
    得ln x1+xeq \\al(2,1)+x1+ln x2+xeq \\al(2,2)+x2+x1x2=0,
    从而(x1+x2)2+(x1+x2)=x1x2-ln(x1x2),
    令t=x1x2(t>0),令φ(t)=t-ln t,得φ′(t)=1-eq \f(1,t)=eq \f(t-1,t),
    易知φ(t)在区间(0,1)上单调递减,在区间(1,+∞)上单调递增,所以φ(t)≥φ(1)=1,所以(x1+x2)2+(x1+x2)≥1,因为x1>0,x2>0,所以x1+x2≥eq \f(\r(5)-1,2).
    [基础题组练]
    1.(2020·河南豫南九校联考)设定义在(0,+∞)上的函数f(x)的导函数f′(x)满足xf′(x)>1,则( )
    A.f(2)-f(1)>ln 2 B.f(2)-f(1)C.f(2)-f(1)>1 D.f(2)-f(1)<1
    解析:选A.根据题意,函数f(x)的定义域为(0,+∞),则xf′(x)>1⇒f′(x)>eq \f(1,x)=(ln x)′,
    即f′(x)-(ln x)′>0.令F(x)=f(x)-ln x,则F(x)在(0,+∞)上单调递增,故f(2)-ln 2>f(1)-ln 1,即f(2)-f(1)>ln 2.
    2.若0A.ex2-ex1>ln x2-ln x1 B.e x2-e x1C.x2e x1>x1e x2 D.x2e x1解析:选C.令f(x)=eq \f(ex,x),
    则f′(x)=eq \f(xex-ex,x2)=eq \f(ex(x-1),x2).
    当0即f(x)在(0,1)上单调递减,因为0所以f(x2)所以x2e x1>x1e x2,故选C.
    3.已知函数f(x)=aex-ln x-1.(e=2.718 28…是自然对数的底数).
    (1)设x=2是函数f(x)的极值点,求实数a的值,并求f(x)的单调区间;
    (2)证明:当a≥eq \f(1,e)时,f(x)≥0.
    解:(1)f(x)的定义域为(0,+∞),f′(x)=aex-eq \f(1,x).
    由题设知,f′(2)=0,所以a=eq \f(1,2e2).
    从而f(x)=eq \f(1,2e2)ex-ln x-1,f′(x)=eq \f(1,2e2)ex-eq \f(1,x).
    当02时,f′(x)>0.
    所以f(x)在(0,2)上单调递减,在(2,+∞)上单调递增.
    (2)证明:当a≥eq \f(1,e)时,f(x)≥eq \f(ex,e)-ln x-1.
    设g(x)=eq \f(ex,e)-ln x-1,则g′(x)=eq \f(ex,e)-eq \f(1,x).
    当01时,g′(x)>0.所以x=1是g(x)的最小值点.故当x>0时,g(x)≥g(1)=0.
    因此,当a≥eq \f(1,e)时,f(x)≥0.
    4.(2020·武汉调研)已知函数f(x)=ln x+eq \f(a,x),a∈R.
    (1)讨论函数f(x)的单调性;
    (2)当a>0时,证明:f(x)≥eq \f(2a-1,a).
    解:(1)f′(x)=eq \f(1,x)-eq \f(a,x2)=eq \f(x-a,x2)(x>0).
    当a≤0时,f′(x)>0,f(x)在(0,+∞)上单调递增.
    当a>0时,若x>a,则f′(x)>0,函数f(x)在(a,+∞)上单调递增;
    若0(2)证明:由(1)知,当a>0时,f(x)min=f(a)=ln a+1.
    要证f(x)≥eq \f(2a-1,a),只需证ln a+1≥eq \f(2a-1,a),
    即证ln a+eq \f(1,a)-1≥0.
    令函数g(a)=ln a+eq \f(1,a)-1,则g′(a)=eq \f(1,a)-eq \f(1,a2)=eq \f(a-1,a2)(a>0),
    当01时,g′(a)>0,
    所以g(a)在(0,1)上单调递减,在(1,+∞)上单调递增,
    所以g(a)min=g(1)=0.
    所以ln a+eq \f(1,a)-1≥0恒成立,
    所以f(x)≥eq \f(2a-1,a).
    5.(2020·福州模拟)已知函数f(x)=eln x-ax(a∈R).
    (1)讨论f(x)的单调性;
    (2)当a=e时,证明:xf(x)-ex+2ex≤0.
    解:(1)f′(x)=eq \f(e,x)-a(x>0).
    ①若a≤0,则f′(x)>0,f(x)在(0,+∞)上单调递增;
    ②若a>0,则当00,当x>eq \f(e,a)时,f′(x)<0,
    故f(x)在eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(e,a)))上单调递增,在eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(e,a),+∞))上单调递减.
    (2)证明:因为x>0,所以只需证f(x)≤eq \f(ex,x)-2e,当a=e时,由(1)知,f(x)在(0,1)上单调递增,在(1,+∞)上单调递减,
    所以f(x)max=f(1)=-e.
    记g(x)=eq \f(ex,x)-2e(x>0),
    则g′(x)=eq \f((x-1)ex,x2),
    所以当01时,g′(x)>0,g(x)单调递增,
    所以g(x)min=g(1)=-e.
    综上,当x>0时,f(x)≤g(x),即f(x)≤eq \f(ex,x)-2e,
    即xf(x)-ex+2ex≤0.
    6.已知函数f(x)=λln x-e-x(λ∈R).
    (1)若函数f(x)是单调函数,求λ的取值范围;
    (2)求证:当01-eq \f(x2,x1).
    解:(1)函数f(x)的定义域为(0,+∞),
    因为f(x)=λln x-e-x,
    所以f′(x)=eq \f(λ,x)+e-x=eq \f(λ+xe-x,x),
    因为函数f(x)是单调函数,
    所以f′(x)≤0或f′(x)≥0在(0,+∞)上恒成立,
    ①当函数f(x)是单调递减函数时,f′(x)≤0,
    所以eq \f(λ+xe-x,x)≤0,即λ+xe-x≤0,λ≤-xe-x=-eq \f(x,ex).
    令φ(x)=-eq \f(x,ex),则φ′(x)=eq \f(x-1,ex),
    当01时,φ′(x)>0,
    则φ(x)在(0,1)上单调递减,在(1,+∞)上单调递增,
    所以当x>0时,φ(x)min=φ(1)=-eq \f(1,e),所以λ≤-eq \f(1,e).
    ②当函数f(x)是单调递增函数时,f′(x)≥0,
    所以eq \f(λ+xe-x,x)≥0,即λ+xe-x≥0,λ≥-xe-x=-eq \f(x,ex),
    由①得φ(x)=-eq \f(x,ex)在(0,1)上单调递减,在(1,+∞)上单调递增,又φ(0)=0,x→+∞时,φ(x)<0,所以λ≥0.
    综上,λ的取值范围为eq \b\lc\(\rc\](\a\vs4\al\c1(-∞,-\f(1,e)))∪[0,+∞).
    (2)证明:由(1)可知,当λ=-eq \f(1,e)时,
    f(x)=-eq \f(1,e)ln x-e-x在(0,+∞)上单调递减,
    因为0f(x2),
    即-eq \f(1,e)ln x1-e-x1>-eq \f(1,e)ln x2-e-x2,
    所以e1-x2-e1-x1>ln x1-ln x2.
    要证e1-x2-e1-x1>1-eq \f(x2,x1),
    只需证ln x1-ln x2>1-eq \f(x2,x1),即证lneq \f(x1,x2)>1-eq \f(x2,x1).
    令t=eq \f(x1,x2),t∈(0,1),则只需证ln t>1-eq \f(1,t),
    令h(t)=ln t+eq \f(1,t)-1,则h′(t)=eq \f(1,t)-eq \f(1,t2)=eq \f(t-1,t2),
    当0又因为h(1)=0,所以h(t)>0,即ln t>1-eq \f(1,t),原不等式得证.
    x
    (0,1)
    1
    (1,+∞)
    f′(x)

    0

    f(x)
    单调递增
    极大值
    单调递减
    联立消参
    利用方程f(x1)=f(x2)消掉解析式中的参数a
    抓商构元
    令c=eq \f(x1,x2),消掉变量x1,x2,构造关于c的函数h(c)
    用导求解
    利用导数求解函数h(c)的最小值,从而可证得结论
    相关学案

    高考数学一轮复习第3章第4课时利用导数证明不等式学案: 这是一份高考数学一轮复习第3章第4课时利用导数证明不等式学案,共11页。

    高考数学一轮复习第3章第2节第3课时利用导数证明不等式——构造法证明不等式学案: 这是一份高考数学一轮复习第3章第2节第3课时利用导数证明不等式——构造法证明不等式学案,共6页。

    (新高考)高考数学一轮复习学案4.4《第1课时 利用导数证明不等式》(含详解): 这是一份(新高考)高考数学一轮复习学案4.4《第1课时 利用导数证明不等式》(含详解),共10页。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        新高考数学一轮复习学案第4章第4讲 第1课时 利用导数证明不等式(含解析)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map